No Arabic abstract
In this paper, we present a semiclassical description of surface waves or modes in an elastic medium near a boundary, in spatial dimension three. The medium is assumed to be essentially stratified near the boundary at some scale comparable to the wave length. Such a medium can also be thought of as a surficial layer (which can be thick) overlying a half space. The analysis is based on the work of Colin de Verdi`ere on acoustic surface waves. The description is geometric in the boundary and locally spectral beneath it. Effective Hamiltonians of surface waves correspond with eigenvalues of ordinary differential operators, which, to leading order, define their phase velocities. Using these Hamiltonians, we obtain pseudodifferential surface wave equations. We then construct a parametrix. Finally, we discuss Weyls formulas for counting surface modes, and the decoupling into two classes of surface waves, that is, Rayleigh and Love waves, under appropriate symmetry conditions.
We justify WKB analysis for Hartree equation in space dimension at least three, in a regime which is supercritical as far as semiclassical analysis is concerned. The main technical remark is that the nonlinear Hartree term can be considered as a semilinear perturbation. This is in contrast with the case of the nonlinear Schrodinger equation with a local nonlinearity, where quasilinear analysis is needed to treat the nonlinearity.
This paper is concerned with the direct and inverse random source scattering problems for elastic waves where the source is assumed to be driven by an additive white noise. Given the source, the direct problem is to determine the displacement of the random wave field. The inverse problem is to reconstruct the mean and variance of the random source from the boundary measurement of the wave field at multiple frequencies. The direct problem is shown to have a unique mild solution by using a constructive proof. Based on the explicit mild solution, Fredholm integral equations of the first kind are deduced for the inverse problem. The regularized Kaczmarz method is presented to solve the ill-posed integral equations. Numerical experiments are included to demonstrate the effectiveness of the proposed method.
In this paper, we consider the nonlinear inhomogeneous compressible elastic waves in three spatial dimensions when the density is a small disturbance around a constant state. In homogeneous case, the almost global existence was established by Klainerman-Sideris [1996_CPAM], and global existence was built by Agemi [2000_Invent. Math.] and Sideris [1996_Invent. Math., 2000_Ann. Math.] independently. Here we establish the corresponding almost global and global existence theory in the inhomogeneous case.
We investigate the orbital stability and instability of standing waves for two classes of Klein-Gordon equations in the semi-classical regime.
We analyze a mathematical model of elastic dislocations with applications to geophysics, where by an elastic dislocation we mean an open, oriented Lipschitz surface in the interior of an elastic solid, across which there is a discontinuity of the displacement. We model the Earth as an infinite, isotropic, inhomogeneous, elastic medium occupying a half space, and assume only Lipschitz continuity of the Lame parameters. We study the well posedness of very weak solutions to the forward problem of determining the displacement by imposing traction-free boundary conditions at the surface, continuity of the traction and a given jump on the displacement across the fault. We employ suitable weighted Sobolev spaces for the analysis. We utilize the well posedness of the forward problem and unique-continuation arguments to establish uniqueness in the inverse problem of determining the dislocation surface and the displacement jump from measuring the displacement at the surface of the Earth. Uniqueness holds for tangential or normal jumps and under some geometric conditions on the surface.