No Arabic abstract
The Gaia Data Release 1 (GDR1) is a first, important step on the path of evolution of astrometric accuracy towards a much improved situation. Although asteroids are not present in GDR1, this intermediate release already impacts asteroid astrometry. Our goal is to investigate how the GDR1 can change the approach to a few typical problems, including the determination of orbits from short-arc astrometry, the exploitation of stellar occultations, and the impact risk assessment. We employ optimised asteroid orbit determination tools, and study the resulting orbit accuracy and post-fit residuals. For this goal, we use selected ground-based asteroid astrometry, and occultation events observed in the past. All measurements are calibrated by using GDR1 stars. We show that, by adopting GDR1, very short measurement arcs can already provide interesting orbital solutions, capable of correctly identifying Near Earth Asteroids (NEAs) and providing a much more accurate risk rating. We also demonstrate that occultations, previously used to derive asteroid size and shapes, now reach a new level of accuracy at which they can be fruitfully used to obtain astrometry at the level of accuracy of Gaia star positions.
Accurate astrometry is crucial for determining orbits of near-Earth-asteroids (NEAs) and therefore better tracking them. This paper reports on a demonstration of 10 milliarcsecond-level astrometric precision on a dozen NEAs using the Pomona College 40 inch telescope, at the JPLs Table Mountain Facility. We used the technique of synthetic tracking, in which many short exposure (1 second) images are acquired and then combined in post-processing to track both target asteroid and reference stars across the field of view. This technique avoids the trailing loss and keeps the jitter effects from atmosphere and telescope pointing common between the asteroid and reference stars, resulting in higher astrometric precision than the 100 mas level astrometry from traditional approach of using long exposure images. Treating our synthetic tracking of near-Earth asteroids as a proxy for observations of future spacecraft while they are downlinking data via their high rate optical communication laser beams, our approach shows precision plane-of-sky measurements can be obtained by the optical ground terminals for navigation. We also discuss how future data releases from the Gaia mission can improve our results.
Astrometric positions of moving objects in the Solar System have been measured using a variety of star catalogs in the past. Previous work has shown that systematic errors in star catalogs can affect the accuracy of astrometric observations. That, in turn, can influence the resulting orbit fits for minor planets. In order to quantify these systematic errors, we compare the positions and proper motion of stellar sources in the most utilized star catalogs to the second release of the Gaia star catalog. The accuracy of Gaia astrometry allows us to unambiguously identify local biases and derive a scheme that can be used to correct past astrometric observations of solar system objects. Here we provide a substantially improved debiasing scheme for 26 astrometric catalogs that were extensively used in minor planet astrometry. Revised corrections near the galactic center eliminate artifacts that could be traced back to reference catalogs used in previous debiasing schemes. Median differences in stellar positions between catalogs now tend to be on the order of several tens of milliarcseconds (mas) but can be as large as 175 mas. Median stellar proper motion corrections scatter around 0.3 mas/yr and range from 1 to 4 mas/yr for star catalogs with and without proper motion, respectively. The tables in this work are meant to be applied to existing optical observations. They are not intended to correct new astrometric measurments as those should make use of the Gaia astrometric catalog. Since previous debiasing schemes already reduced systematics in past observations to a large extent, corrections beyond the current work may not be needed in the foreseeable future.
New astrometric reductions of the US Naval Observatory CCD Astrograph Catalog (UCAC) all-sky observations were performed from first principles using the TGAS stars in the 8 to 11 magnitude range as reference star catalog. Significant improvements in the astrometric solutions were obtained and the UCAC5 catalog of mean positions at a mean epoch near 2001 was generated. By combining UCAC5 with Gaia DR1 data new proper motions on the Gaia coordinate system for over 107 million stars were obtained with typical accuracies of 1 to 2 mas/yr (R = 11 to 15 mag), and about 5 mas/yr at 16th mag. Proper motions of most TGAS stars are improved over their Gaia data and the precision level of TGAS proper motions is extended to many millions more, fainter stars. External comparisons were made using stellar cluster fields and extragalactic sources. The TGAS data allow us to derive the limiting precision of the UCAC x,y data, which is significantly better than 1/100 pixel.
The Gaia mission started its regular observing program in the summer of 2014, and since then it is regularly obtaining observations of asteroids. This paper draws the outline of the data processing for Solar System objects, and in particular on the daily short-term processing, from the on-board data acquisition to the ground-based processing. We illustrate the tools developed to compute predictions of asteroid observations, we discuss the procedures implemented by the daily processing, and we illustrate some tests and validations of the processing of the asteroid observations. Our findings are overall consistent with the expectations concerning the performances of Gaia and the effectiveness of the developed software for data reduction.
The power of micro-arcsecond ($mu$as) astrometry is about to be unleashed. ESAs Gaia mission, now headed towards the end of the first year of routine science operations, will soon fulfil its promise for revolutionary science in countless aspects of Galactic astronomy and astrophysics. The potential of Gaia position measurements for important contributions to the astrophysics of planetary systems is huge. We focus here on the expectations for detection and improved characterization of young planetary systems in the neighborhood of the Sun using a combination of Gaia $mu$as astrometry and direct imaging techniques.