No Arabic abstract
The Helioseismic and Magnetic Imager onboard the Solar Dynamics Observatory has provided unique observations of off-limb flare emission. White-light (WL) continuum enhancements were detected in the continuum channel of the Fe 6173 A line during the impulsive phase of the observed flares. In this paper we aim to determine which radiation mechanism is responsible for such an enhancement being seen above the limb, at chromospheric heights around or below 1000 km. Using a simple analytical approach, we compare two candidate mechanisms, the hydrogen recombination continuum (Paschen) and the Thomson continuum due to scattering of disk radiation on flare electrons. Both mechanisms depend on the electron density, which is typically enhanced during the impulsive phase of a flare as the result of collisional ionization (both thermal and also non-thermal due to electron beams). We conclude that for electron densities higher than $10^{12}$ cm$^{-3}$, the Paschen recombination continuum significantly dominates the Thomson scattering continuum and there is some contribution from the hydrogen free-free emission. This is further supported by detailed radiation-hydrodynamical (RHD) simulations of the flare chromosphere heated by the electron beams. We use the RHD code FLARIX to compute the temporal evolution of the flare heating in a semi-circular loop. The synthesized continuum structure above the limb resembles the off-limb flare structures detected by HMI, namely their height above the limb, as well as the radiation intensity. These results are consistent with recent findings related to hydrogen Balmer continuum enhancements, which were clearly detected in disk flares by the IRIS near-ultraviolet spectrometer.
The density distribution of flare loops and the mechanisms of their emission in the continuum are still open questions. On September 10, 2017 a prominent loop system appeared during the gradual phase of an X8.2 flare (SOL2017-09-10), visible in all passbands of SDO/AIA and in the white-light continuum of SDO/HMI. We investigate its electron density by taking into account all radiation processes in the flare loops, i.e. the Thomson continuum, hydrogen Paschen and Brackett recombination continua, as well as free-free continuum emission. We derive a quadratic function of the electron density for a given temperature and effective loop thickness. By absolutely calibrating SDO/HMI intensities, we convert the measured intensities into electron density at each pixel in the loops. For a grid of plausible temperatures between cool (6000 K) and hot (10^6 K) structures, the electron density is computed for representative effective thicknesses between 200 and 20 000 km. We obtain a relatively high maximum electron density, about 10^13 cm^-3. At such high electron densities, the Thomson continuum is negligible and therefore one would not expect a significant polarization degree in dense loops. We conclude that the Paschen and Brackett recombination continua are dominant in cool flare loops, while the free-free continuum emission is dominant for warmer and hot loops.
Solar flares with a broadband emission in the white-light range of the electromagnetic spectrum belong to most enigmatic phenomena on the Sun. The origin of the white-light emission is not entirely understood. We aim to systematically study the visible-light emission connected to solar flares in SDO/HMI observations. We developed a code for automatic detection of kernels of flares with HMI intensity brightenings and study properties of detected candidates. The code was tuned and tested and with a little effort, it could be applied to any suitable data set. By studying a few flare examples, we found indication that HMI intensity brightening might be an artefact of the simplified procedure used to compute HMI observables.
We present an analysis of off-limb cool flare loops observed by SDO/AIA during the gradual phase of SOL2017-09-10T16:06 X8.2-class flare. In the EUV channels starting from the 335 {AA} one, cool loops appear as dark structures against the bright loop arcade. These dark structures were precisely coaligned (spatially and temporally) with loops observed by SST in emission lines of hydrogen and ionized calcium. Recently published semi-empirical model of cool loops based on SST observations serves us to predict the level of hydrogen and helium recombination continua. The continua were synthesized using an approximate non-LTE approach and theoretical spectra were then transformed to AIA signals. Comparison with signals detected inside the dark loops shows that only in AIA 211 {AA} channel the computed level of recombination continua is consistent with observations for some models, while in all other channels which are more distant from the continua edges the synthetic continuum is far too low. In analogy with on-disk observations of flares we interpret the surplus emission as due to numerous EUV lines emitted from hot but faint loops in front of the cool ones. Finally we briefly comment on failure of the standard absorption model when used for analysis of the dark-loop brightness.
Aims: The statistics of the photospheric granulation pattern are investigated using continuum images observed by Solar Dynamic Observatory (SDO)/Helioseismic and Magnetic Imager (HMI) taken at 6713~AA. Methods: The supergranular boundaries can be extracted by tracking photospheric velocity plasma flows. The local ball-tracking method is employed to apply on the HMI data gathered over the years 2011-2015 to estimate the boundaries of the cells. The edge sharpening techniques are exerted on the output of ball-tracking to precisely identify the cells borders. To study the fractal dimensionality (FD) of supergranulation, the box counting method is used. Results: We found that both the size and eccentricity follow the log-normal distributions with peak values about 330 Mm$^2$ and 0.85, respectively. The five-year mean value of the cells number appeared in half-hour sequences is obtained to be about 60 $pm$ 6 within an area of $350^{primeprime}times350^{primeprime}$. The cells orientation distribution presents the power-law behavior. Conclusions: The orientation of supergranular cells ($O$) and their size ($S$) follows a power-law function as $|O| propto S^{9.5}$. We found that the non-roundish cells with smaller and larger sizes than 600 Mm$^2$ are aligned and perpendicular with the solar rotational velocity on the photosphere, respectively. The FD analysis shows that the supergranular cells form the self-similar patterns.
Flare ribbons are bright manifestations of flare energy dissipation in the lower solar atmosphere. For the first time, we report on high-resolution imaging spectroscopy observations of flare ribbons situated off-limb in the H$beta$ and Ca II 8542 {AA} lines and make a detailed comparison with radiative hydrodynamic simulations. Observations of the X8.2-class solar flare SOL2017-09-10T16:06 UT obtained with the Swedish Solar Telescope reveal bright horizontal emission layers in H$beta$ line wing images located near the footpoints of the flare loops. The apparent separation between the ribbon observed in the H$beta$ wing and the nominal photospheric limb is about 300 - 500 km. The Ca II 8542 {AA} line wing images show much fainter ribbon emissions located right on the edge of the limb, without clear separation from the limb. RADYN models are used to investigate synthetic spectral line profiles for the flaring atmosphere, and good agreement is found with the observations. The simulations show that, towards the limb, where the line of sight is substantially oblique with respect to the vertical direction, the flaring atmosphere model reproduces the high contrast of the off-limb H$beta$ ribbons and their significant elevation above the photosphere. The ribbons in the Ca II 8542 {AA} line wing images are located deeper in the lower solar atmosphere with a lower contrast. A comparison of the height deposition of electron beam energy and the intensity contribution function shows that the H$beta$ line wing intensities can be an useful tracer of flare energy deposition in the lower solar atmosphere