Do you want to publish a course? Click here

Cartman: The low-cost Cartesian Manipulator that won the Amazon Robotics Challenge

89   0   0.0 ( 0 )
 Added by Douglas Morrison
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

The Amazon Robotics Challenge enlisted sixteen teams to each design a pick-and-place robot for autonomous warehousing, addressing development in robotic vision and manipulation. This paper presents the design of our custom-built, cost-effective, Cartesian robot system Cartman, which won first place in the competition finals by stowing 14 (out of 16) and picking all 9 items in 27 minutes, scoring a total of 272 points. We highlight our experience-centred design methodology and key aspects of our system that contributed to our competitiveness. We believe these aspects are crucial to building robust and effective robotic systems.



rate research

Read More

We present the grasping system and design approach behind Cartman, the winning entrant in the 2017 Amazon Robotics Challenge. We investigate the design processes leading up to the final iteration of the system and describe the emergent solution by comparing it with key robotics design aspects. Following our experience, we propose a new design aspect, precision vs. redundancy, that should be considered alongside the previously proposed design aspects of modularity vs. integration, generality vs. assumptions, computation vs. embodiment and planning vs. feedback. We present the grasping system behind Cartman, the winning robot in the 2017 Amazon Robotics Challenge. The system makes strong use of redundancy in design by implementing complimentary tools, a suction gripper and a parallel gripper. This multi-modal end-effector is combined with three grasp synthesis algorithms to accommodate the range of objects provided by Amazon during the challenge. We provide a detailed system description and an evaluation of its performance before discussing the broader nature of the system with respect to the key aspects of robotic design as initially proposed by the winners of the first Amazon Picking Challenge. To address the principal nature of our grasping system and the reason for its success, we propose an additional robotic design aspect `precision vs. redundancy. The full design of our robotic system, including the end-effector, is open sourced and available at http://juxi.net/projects/AmazonRoboticsChallenge/
ROBEL is an open-source platform of cost-effective robots designed for reinforcement learning in the real world. ROBEL introduces two robots, each aimed to accelerate reinforcement learning research in different task domains: DClaw is a three-fingered hand robot that facilitates learning dexterous manipulation tasks, and DKitty is a four-legged robot that facilitates learning agile legged locomotion tasks. These low-cost, modular robots are easy to maintain and are robust enough to sustain on-hardware reinforcement learning from scratch with over 14000 training hours registered on them to date. To leverage this platform, we propose an extensible set of continuous control benchmark tasks for each robot. These tasks feature dense and sparse task objectives, and additionally introduce score metrics as hardware-safety. We provide benchmark scores on an initial set of tasks using a variety of learning-based methods. Furthermore, we show that these results can be replicated across copies of the robots located in different institutions. Code, documentation, design files, detailed assembly instructions, final policies, baseline details, task videos, and all supplementary materials required to reproduce the results are available at www.roboticsbenchmarks.org.
The Amazon Picking Challenge (APC), held alongside the International Conference on Robotics and Automation in May 2015 in Seattle, challenged roboticists from academia and industry to demonstrate fully automated solutions to the problem of picking objects from shelves in a warehouse fulfillment scenario. Packing density, object variability, speed, and reliability are the main complexities of the task. The picking challenge serves both as a motivation and an instrument to focus research efforts on a specific manipulation problem. In this document, we describe Team MITs approach to the competition, including design considerations, contributions, and performance, and we compile the lessons learned. We also describe what we think are the main remaining challenges.
Many have explored the application of continuum robot manipulators for minimally invasive surgery, and have successfully demonstrated the advantages their flexible design provides -- with some solutions having reached commercialisation and clinical practice. However, the usual high complexity and closed-nature of such designs has traditionally restricted the shared development of continuum robots across the research area, thus impacting further progress and the solution of open challenges. In order to close this gap, this paper introduces ENDO, an open-source 3-segment continuum robot manipulator with control and actuation mechanism, whose focus is on simplicity, affordability, and accessibility. This robotic system is fabricated from low cost off-the-shelf components and rapid prototyping methods, and its information for implementation (and that of future iterations), including CAD files and source code, is available to the public on the Open Source Medical Robots initiatives repository on GitHub (https://github.com/OpenSourceMedicalRobots), with the control library also available directly from Arduino. Herein, we present details of the robot design and control, validate functionality by experimentally evaluating its workspace, and discuss possible paths for future development.
In this study, we investigate the attentiveness exhibited by participants sourced through Amazon Mechanical Turk (MTurk), thereby discovering a significant level of inattentiveness amongst the platforms top crowd workers (those classified as Master, with an Approval Rate of 98% or more, and a Number of HITS approved value of 1,000 or more). A total of 564 individuals from the United States participated in our experiment. They were asked to read a vignette outlining one of four hypothetical technology products and then complete a related survey. Three forms of attention check (logic, honesty, and time) were used to assess attentiveness. Through this experiment we determined that a total of 126 (22.3%) participants failed at least one of the three forms of attention check, with most (94) failing the honesty check - followed by the logic check (31), and the time check (27). Thus, we established that significant levels of inattentiveness exist even among the most elite MTurk workers. The study concludes by reaffirming the need for multiple forms of carefully crafted attention checks, irrespective of whether participant quality is presumed to be high according to MTurk criteria such as Master, Approval Rate, and Number of HITS approved. Furthermore, we propose that researchers adjust their proposals to account for the effort and costs required to address participant inattentiveness.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا