No Arabic abstract
Recently, coherent control of the optical response of thin films of matter in standing waves has attracted considerable attention, ranging from applications in excitation-selective spectroscopy and nonlinear optics to demonstrations of all-optical image processing. Here we show that integration of metamaterial and optical fibre technologies allows the use of coherently controlled absorption in a fully fiberized and packaged switching metadevice. With this metadevice, that controls light with light in a nanoscale plasmonic metamaterial film on an optical fibre tip, we provide proof-of-principle demonstrations of logical functions XOR, NOT and AND that are performed within a coherent fully fiberized network at wavelengths between 1530 nm and 1565 nm. The metadevice performance has been tested with optical signals equivalent to a bitrate of up to 40 Gbit/s and sub-milliwatt power levels. Since coherent absorption can operate at the single photon level and also with 100 THz bandwidth, we argue that the demonstrated all-optical switch concept has potential applications in coherent and quantum information networks.
A systematic numerical study of ultrafast nonlinear directional coupler performance based on soliton self-trapping in a novel type of dual-core optical fibre is presented. The considered highly nonlinear fibre structure is composed of a real, intentionally developed soft glass-pair with high refractive index contrast at the level of 0.4 in the near infrared. Nonlinear propagation of picojoule level femtosecond pulses was studied numerically with the aim to identify the best switching performance in input parameter space of 1400 - 1800 nm in terms of excitation wavelengths, and of 75 - 150 fs in terms of pulse width, respectively. For every combination of excitation wavelength and pulse width, the switching energies together with the optimal fibre length were determined and their relation to the input and switching parameters is discussed. The highest switching contrast of 46 dB in the time window of the ultrashort soliton was predicted at combination of 1500 nm excitation wavelength and 75 fs pulse width considering 43 mm fibre length. These results represent significant improvement both from point of view of switching contrast and switching energies, which are only at level of 20 pJ, in comparison to the previously published case of air-glass dual-core photonic crystal fibre. Moreover, the simpler fibre design without cladding microstructure together with the all-solid approach holds promise of improved dual-core symmetry and therefore offers high probability of the successful realization of a low power, compact and simple switching device.
We demonstrate acousto-optic phase modulators in X-cut lithium niobate films on sapphire, detailing the dependence of the piezoelectric and optomechanical coupling coefficients on the crystal orientation. This new platform supports highly confined, strongly piezoelectric mechanical waves without suspensions, making it a promising candidate for broadband and efficient integrated acousto-optic devices, circuits, and systems.
In this paper we report phase modulation obtained by inducing a capacitive charge on graphene layers embedded in the core of a waveguide. There is a biasing regime in which graphene absorption is negligible but large index variations can be achieved with a voltage-length product as small as $V_pi,L_pi simeq 0.04 $,V,cm . Examples of phase induced changes are computed for straight waveguides and for microring resonators showing the possibility to implement several optoelectronic functionalities as modulators, tunable filters, and switches.
We observe a strong polarization dependent optical loss of in-plane light propagation in silicon waveguide due to the presence of graphene. Both transverse-electric (TE) and transverse-magnetic (TM) modes are efficiently (~3 dB) coupled to the graphene on suspended membrane waveguides using an apodized focusing subwavelength grating. The TE mode has 7.7 dB less excess optical loss than the TM mode at 1.5 {mu}m for a 150 {mu}m long waveguide in good agreement with a theoretical model. All-optical modulation of light is demonstrated. There is also a large thermally induced change in waveguide effective index because of optical absorption in graphene.
When an atom strongly couples to a cavity, it can undergo coherent vacuum Rabi oscillations. Controlling these oscillatory dynamics quickly relative to the vacuum Rabi frequency enables remarkable capabilities such as Fock state generation and deterministic synthesis of quantum states of light, as demonstrated using microwave frequency devices. At optical frequencies, however, dynamical control of single-atom vacuum Rabi oscillations remains challenging. Here, we demonstrate coherent transfer of optical frequency excitation between a single quantum dot and a cavity by controlling vacuum Rabi oscillations. We utilize a photonic molecule to simultaneously attain strong coupling and a cavity-enhanced AC Stark shift. The Stark shift modulates the detuning between the two systems on picosecond timescales, faster than the vacuum Rabi frequency. We demonstrate the ability to add and remove excitation from the cavity, and perform coherent control of light-matter states. These results enable ultra-fast control of atom-cavity interactions in a nanophotonic device platform.