Do you want to publish a course? Click here

Shiba Bound States across the mobility edge in doped InAs nanowires

253   0   0.0 ( 0 )
 Added by Herve Aubin
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a study of Andreev Quantum Dots (QDots) fabricated with small-diameter (30 nm) Si-doped InAs nanowires where the Fermi level can be tuned across a mobility edge separating localized states from delocalized states. The transition to the insulating phase is identified by a drop in the amplitude and width of the excited levels and is found to have remarkable consequences on the spectrum of superconducting SubGap Resonances (SGRs). While at deeply localized levels, only quasiparticles co-tunneling is observed, for slightly delocalized levels, Shiba bound states form and a parity changing quantum phase transition is identified by a crossing of the bound states at zero energy. Finally, in the metallic regime, single Andreev resonances are observed.



rate research

Read More

We investigate a paradigmatic case of topological superconductivity in a one-dimensional nanowire with $d-$orbitals and a strong interplay of spin-orbital degrees of freedom due to the competition of orbital Rashba interaction, atomic spin-orbit coupling, and structural distortions. We demonstrate that the resulting electronic structure exhibits an orbital dependent magnetic anisotropy which affects the topological phase diagram and the character of the Majorana bound states (MBSs). The inspection of the electronic component of the MBSs reveals that the spin-orbital polarization generally occurs along the direction of the applied Zeeeman magnetic field, and transverse to the magnetic and orbital Rashba fields. The competition of symmetric and antisymmetric spin-orbit coupling remarkably leads to a misalignment of the spin and orbital moments transverse to the orbital Rashba fields, whose manifestation is essentially orbital dependent. The behavior of the spin-orbital polarization along the applied Zeeman field reflects the presence of multiple Fermi points with inequivalent orbital character in the normal state. Additionally, the response to variation of the electronic parameters related with the degree of spin-orbital entanglement leads to distinctive evolution of the spin-orbital polarization of the MBSs. These findings unveil novel paths to single-out hallmarks relevant for the experimental detection of MBSs.
There is presently a tremendous activity around the field of topological superconductivity and Majorana fermions. Among the many questions raised, it has become increasingly important to establish the topological or non-topological origin of features associated with Majorana fermions such as zero-bias peaks. Here, we compare in-gap features associated either with isolated magnetic impurities or with magnetic clusters strongly coupled to the atomically thin superconductor Pb/Si(111). We study this system by means of scanning tunneling microscopy and spectroscopy (STM/STS). We take advantage of the fact that the Pb/Si(111) monolayer can exist either in a crystal-ordered phase or in an incommensurate disordered phase to compare the observed spectroscopic features in both phases. This allows us to demonstrate that the strongly resolved in-gap states we found around the magnetic clusters in the disordered phase of Pb have a clear topological origin.
We study the effect of strong spin-orbit coupling (SOC) on bound states induced by impurities in superconductors. The presence of spin-orbit coupling breaks the $mathbb{SU}(2)$-spin symmetry and causes the superconducting order parameter to have generically both singlet (s-wave) and triplet (p-wave) components. We find that in the presence of SOC the spectrum of Yu-Shiba-Rusinov (YSR) states is qualitatively different in s-wave and p-wave superconductor, a fact that can be used to identify the superconducting pairing symmetry of the host system. We also predict that in the presence of SOC the spectrum of the impurity-induced bound states depends on the orientation of the magnetic moment $bf{S}$ of the impurity and, in particular, that by changing the orientation of $bf{S}$ the fermion-parity of the lowest energy bound state can be tuned. We then study the case of a dimer of magnetic impurities and show that in this case the YSR spectrum for a p-wave superconductor is qualitatively very different from the one for an s-wave superconductor even in the limit of vanishing SOC. Our predictions can be used to distinguish the symmetry of the order parameter and have implications for the Majorana proposals based on chains of magnetic atoms placed on the surface of superconductors with strong spin-orbit coupling.
We analyze the phase diagram associated with a pair of magnetic impurities trapped in a superconducting host. The natural interplay between Kondo screening, superconductivity and exchange interactions leads to a rich array of competing phases, whose transitions are characterized by discontinuous changes of the total spin. Our analysis is based on a combination of numerical renormalization group techniques as well as semi-classical analytics. In addition to the expected screened and unscreened phases, we observe a new molecular doublet phase where the impurity spins are only partially screened by a single extended quasiparticle. Direct signatures of the various Shiba molecule states can be observed via RF spectroscopy.
Bound states in superconductors are expected to exhibit a spatially resolved electron-hole asymmetry which is the hallmark of their quantum nature. This asymmetry manifests as oscillations at the Fermi wavelength, which is usually tiny and thus washed out by thermal broadening or by scattering at defects. Here we demonstrate theoretically and confirm experimentally that, when coupled to magnetic impurities, bound states in a vortex core exhibit an emergent axial electron-hole asymmetry on a much longer scale, set by the coherence length. We study vortices in 2H-NbSe$_2$ and in 2H-NbSe$_{1.8}$S_{0.2}$ with magnetic impurities, characterizing these with detailed Hubbard-corrected density functional calculations. We find that the induced electron-hole imbalance depends on the band character of the superconducting material. Our results open interesting prospects for the study of coupled superconducting bound states.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا