Do you want to publish a course? Click here

Impurity-induced bound states in superconductors with spin-orbit coupling

176   0   0.0 ( 0 )
 Added by Younghyun Kim
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the effect of strong spin-orbit coupling (SOC) on bound states induced by impurities in superconductors. The presence of spin-orbit coupling breaks the $mathbb{SU}(2)$-spin symmetry and causes the superconducting order parameter to have generically both singlet (s-wave) and triplet (p-wave) components. We find that in the presence of SOC the spectrum of Yu-Shiba-Rusinov (YSR) states is qualitatively different in s-wave and p-wave superconductor, a fact that can be used to identify the superconducting pairing symmetry of the host system. We also predict that in the presence of SOC the spectrum of the impurity-induced bound states depends on the orientation of the magnetic moment $bf{S}$ of the impurity and, in particular, that by changing the orientation of $bf{S}$ the fermion-parity of the lowest energy bound state can be tuned. We then study the case of a dimer of magnetic impurities and show that in this case the YSR spectrum for a p-wave superconductor is qualitatively very different from the one for an s-wave superconductor even in the limit of vanishing SOC. Our predictions can be used to distinguish the symmetry of the order parameter and have implications for the Majorana proposals based on chains of magnetic atoms placed on the surface of superconductors with strong spin-orbit coupling.



rate research

Read More

Bound states in superconductors are expected to exhibit a spatially resolved electron-hole asymmetry which is the hallmark of their quantum nature. This asymmetry manifests as oscillations at the Fermi wavelength, which is usually tiny and thus washed out by thermal broadening or by scattering at defects. Here we demonstrate theoretically and confirm experimentally that, when coupled to magnetic impurities, bound states in a vortex core exhibit an emergent axial electron-hole asymmetry on a much longer scale, set by the coherence length. We study vortices in 2H-NbSe$_2$ and in 2H-NbSe$_{1.8}$S_{0.2}$ with magnetic impurities, characterizing these with detailed Hubbard-corrected density functional calculations. We find that the induced electron-hole imbalance depends on the band character of the superconducting material. Our results open interesting prospects for the study of coupled superconducting bound states.
We consider the Higgs mode at nonzero momentum in superconductors and demonstrate that in the presence of Rashba spin-orbit coupling, it couples linearly with an external exchange field. The Higgs-spin coupling dramatically modifies the spin susceptibility near the superconducting critical temperature and consequently enhances the spin pumping effect in a ferromagnetic insulator/superconductor bilayer system. We show that this effect can be detected by measuring the magnon-induced voltage generated by the inverse spin Hall effect.
The transmission of Cooper pairs between two weakly coupled superconductors produces a superfluid current and a phase difference; the celebrated Josephson effect. Because of time-reversal and parity symmetries, there is no Josephson current without a phase difference between two superconductors. Reciprocally, when those two symmetries are broken, an anomalous supercurrent can exist in the absence of phase bias or, equivalently, an anomalous phase shift $varphi_0$ can exist in the absence of a superfluid current. We report on the observation of an anomalous phase shift $varphi_0$ in hybrid Josephson junctions fabricated with the topological insulator Bi$_2$Se$_3$ submitted to an in-plane magnetic field. This anomalous phase shift $varphi_0$ is observed directly through measurements of the current-phase relationship in a Josephson interferometer. This result provides a direct measurement of the spin-orbit coupling strength and open new possibilities for phase-controlled Josephson devices made from materials with strong spin-orbit coupling.
Quantum simulators hold the promise of probing central questions of high-energy physics in tunable condensed matter platforms, for instance the physics of confinement. Local defects can be an obstacle in these setups harming their simulation capabilities. However, defects in the form of impurities can also be useful as probes of many-body correlations and may lead to fascinating new phenomena themselves. Here, we investigate the interplay between impurity and confinement physics in a basic spin chain setup, showing the emergence of new exotic excitations as impurity-meson bound states with a long lifetime. For weak confinement, semiclassical approximations can describe the capture process in a meson-impurity scattering event. In the strong-confining regime, intrinsic quantum effects are visible through the quantization of the emergent bound state energies which can be readily probed in quantum simulators.
Quantum states induced by single-atomic-impurities are the current frontier of material and information science. Recently the spin-orbit coupled correlated kagome magnets are emerging as a new class of topological quantum materials, although the effect of single-atomic impurities remains unexplored. Here we use state-of-the-art scanning tunneling microscopy/spectroscopy (STM/S) to study the atomic indium impurity in a topological kagome magnet Co3Sn2S2, which is designed to support the spin-orbit quantum state. We find each impurity features a strongly localized bound state. Our systematic magnetization-polarized tunneling probe reveals its spin-down polarized nature with an unusual moment of -5uB, indicative of additional orbital magnetization. As the separation between two impurities progressively shrinks, their respective bound states interact and form quantized molecular orbital states. The molecular orbital of three neighboring impurities further exhibits an intriguing splitting owing to the combination of geometry, magnetism, and spin-orbit coupling, analogous to the splitting of the topological Weyl fermion line12,19. Our work demonstrates the quantum-level interplay between magnetism and spin-orbit coupling at an individual atomic impurity, which provides insights into the emergent impurity behavior in a topological kagome magnet and the potential of spin-orbit quantum impurities for information science.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا