No Arabic abstract
Quantum coherence, the physical property underlying fundamental phenomena such as multi-particle interference and entanglement, has emerged as a valuable resource upon which exotic modern technologies are founded. In general, the most prominent adversary of quantum coherence is noise arising from the interaction of the associated dynamical system with its environment. Under certain conditions, however, the existence of noise may drive quantum and classical systems to endure intriguing nontrivial effects. Along these lines, here we demonstrate, both theoretically and experimentally, that when two indistinguishable particles co-propagate through quantum networks affected by noise, the system always evolves into a steady state in which coherences between certain separable states perpetually prevail. Furthermore, we show that the same steady state with surviving quantum coherences is reached irrespectively of the configuration in which the particles are prepared.
Quantum coherence, the physical property underlying fundamental phenomena such as multi-particle interference and entanglement, has emerged as a valuable resource upon which modern technologies are founded. In general, the most prominent adversary of quantum coherence is noise arising from the interaction of the associated dynamical system with its environment. Under certain conditions, however, the existence of noise may drive quantum and classical systems to endure intriguing nontrivial effects. In this vein, here we demonstrate, both theoretically and experimentally, that when two indistinguishable non-interacting particles co-propagate through quantum networks affected by non-dissipative noise, the system always evolves into a steady state in which coherences accounting for particle indistinguishabilty perpetually prevail. Furthermore, we show that the same steady state with surviving quantum coherences is reached even when the initial state exhibits classical correlations.
The Hamilton operator of an open quantum system is non-Hermitian. Its eigenvalues are, generally, complex and provide not only the energies but also the lifetimes of the states of the system. The states may couple via the common environment of scattering wavefunctions into which the system is embedded. This causes an {it external mixing} (EM) of the states. Mathematically, EM is related to the existence of singular (the so-called exceptional) points (EPs). The eigenfunctions of a non-Hermitian operator are biorthogonal, in contrast to the orthogonal eigenfunctions of a Hermitian operator. A quantitative measure for the ratio between biorthogonality and orthogonality is the phase rigidity of the wavefunctions. At and near an EP, the phase rigidity takes its minimum value. The lifetimes of two nearby eigenstates of a quantum system bifurcate under the influence of an EP. At the parameter value of maximum width bifurcation, the phase rigidity approaches the value one, meaning that the two eigenfunctions become orthogonal. However, the eigenfunctions are externally mixed at this parameter value. The S-matrix and therewith the cross section do contain, in the one-channel case, almost no information on the EM of the states. The situation is completely different in the case with two (or more) channels where the resonance structure is strongly influenced by the EM of the states and interesting features of non-Hermitian quantum physics are revealed. We provide numerical results for two and three nearby eigenstates of a non-Hermitian Hamilton operator which are embedded in one common continuum and influenced by two adjoining EPs. The results are discussed. They are of interest for an experimental test of the non-Hermitian quantum physics as well as for applications.
The underlying probabilistic theory for quantum mechanics is non-Kolmogorovian. The order in which physical observables will be important if they are incompatible (non-commuting). In particular, the notion of conditioning needs to be handled with care and may not even exist in some cases. Here we layout the quantum probabilistic formulation in terms of von Neumann algebras, and outline conditions (non-demolition properties) under which filtering may occur.
Two primary facets of quantum technological advancement that hold great promise are quantum communication and quantum computation. For quantum communication, the canonical resource is entanglement. For quantum gate implementation, the resource is magic in an auxiliary system. It has already been shown that quantum coherence is the fundamental resource for the creation of entanglement. We argue on the similar spirit that quantum coherence is the fundamental resource when it comes to the creation of magic. This unifies the two strands of modern development in quantum technology under the common underpinning of existence of quantum superposition, quantified by the coherence in quantum theory. We also attempt to obtain magic monotones inspired from coherence monotones and vice versa. We further study the interplay between quantum coherence and magic in a qutrit system and that between quantum entanglement and magic in a qutrit-qubit setting.
We investigate a possibility to generate non-classical states in light-matter coupled noisy quantum systems, namely the anisotropic Rabi and Dicke models. In these hybrid quantum systems a competing influence of coherent internal dynamics and environment induced dissipation drives the system into non-equilibrium steady states (NESSs). Explicitly, for the anisotropic Rabi model the steady state is given by an incoherent mixture of two states of opposite parities, but as each parity state displays light-matter entanglement we also find that the full state is entangled. Furthermore, as a natural extension of the anisotropic Rabi model to an infinite spin subsystem, we next explored the NESS of the anisotropic Dicke model. The NESS of this linearized Dicke model is also an inseparable state of light and matter. With an aim to enrich the dynamics beyond the sustainable entanglement found for the NESS of these hybrid quantum systems, we also propose to combine an all-optical feedback strategy for quantum state protection and for establishing quantum control in these systems. Our present work further elucidates the relevance of such hybrid open quantum systems for potential applications in quantum architectures.