No Arabic abstract
Off-lattice active Brownian particles form clusters and undergo phase separation even in the absence of attractions or velocity-alignment mechanisms. Arguments that explain this phenomenon appeal only to the ability of particles to move persistently in a direction that fluctuates, but existing lattice models of hard particles that account for this behavior do not exhibit phase separation. Here we present a lattice model of active matter that exhibits motility-induced phase separation in the absence of velocity alignment. Using direct and rare-event sampling of dynamical trajectories we show that clustering and phase separation are accompanied by pronounced fluctuations of static and dynamic order parameters. This model provides a complement to off-lattice models for the study of motility-induced phase separation.
Collective motion is often modeled within the framework of active fluids, where the constituent active particles, when interactions with other particles are switched off, perform normal diffusion at long times. However, in biology, single-particle superdiffusion and fat-tailed displacement statistics are also widespread. The collective properties of interacting systems exhibiting such anomalous diffusive dynamics, which we call active Levy matter, cannot be captured by current active fluid theories. Here, we formulate a hydrodynamic theory of active Levy matter by coarse-graining a microscopic model of aligning polar active particles that perform superdiffusion akin to Levy flights. Applying a linear stability analysis on the hydrodynamic equations at the onset of collective motion, we find that, in contrast to its conventional counterpart, the order-disorder transition can become critical. We then estimate the corresponding critical exponents by finite size scaling analysis of numerical simulations. Our work highlights the novel physics in active matter that integrates both anomalous diffusive motility and inter-particle interactions.
The coupling of active, self-motile particles to topological constraints can give rise to novel non-equilibrium dynamical patterns that lack any passive counterpart. Here we study the behavior of self-propelled rods confined to a compact spherical manifold by means of Brownian dynamics simulations. We establish the state diagram and find that short active rods at sufficiently high density exhibit a glass transition toward a disordered state characterized by persistent self-spinning motion. By periodically melting and revitrifying the spherical spinning glass, we observe clear signatures of time-dependent aging and rejuvenation physics. We quantify the crucial role of activity in these non-equilibrium processes, and rationalize the aging dynamics in terms of an absorbing-state transition toward a more stable active glassy state. Our results demonstrate both how concepts of passive glass phenomenology can carry over into the realm of active matter, and how topology can enrich the collective spatiotemporal dynamics in inherently non-equilibrium systems.
Chemical reaction networks offer a natural nonlinear generalisation of linear Markov jump processes on a finite state-space. In this paper, we analyse the dynamical large deviations of such models, starting from their microscopic version, the chemical master equation. By taking a large-volume limit, we show that those systems can be described by a path integral formalism over a Lagrangian functional of concentrations and chemical fluxes. This Lagrangian is dual to a Hamiltonian, whose trajectories correspond to the most likely evolution of the system given its boundary conditions. The same can be done for a system biased on time-averaged concentrations and currents, yielding a biased Hamiltonian whose trajectories are optimal paths conditioned on those observables. The appropriate boundary conditions turn out to be mixed, so that, in the long time limit, those trajectories converge to well-defined attractors. We are then able to identify the largest value that the Hamiltonian takes over those attractors with the scaled cumulant generating function of our observables, providing a non-linear equivalent to the well-known Donsker-Varadhan formula for jump processes. On that basis, we prove that chemical reaction networks that are deterministically multistable generically undergo first-order dynamical phase transitions in the vicinity of zero bias. We illustrate that fact through a simple bistable model called the Schlogl model, as well as multistable and unstable generalisations of it, and we make a few surprising observations regarding the stability of deterministic fixed points, and the breaking of ergodicity in the large-volume limit.
We report a preliminary numerical study by kinetic Monte Carlo simulation of the dynamics of phase separation following a quench from high to low temperature in a system with a single, conserved, scalar order parameter (a kinetic Ising ferromagnet) confined to a hyperbolic lattice. The results are compared with simulations of the same system on two different, Euclidean lattices, in which cases we observe power-law domain growth with an exponent near the theoretically known value of 1/3. For the hyperbolic lattice we observe much slower domain growth, consistent to within our current accuracy with power-law growth with a much smaller exponent near 0.13. The paper also includes a brief introduction to non-Euclidean lattices and their mapping to the Euclidean plane.
Anomalous diffusion, manifest as a nonlinear temporal evolution of the position mean square displacement, and/or non-Gaussian features of the position statistics, is prevalent in biological transport processes. Likewise, collective behavior is often observed to emerge spontaneously from the mutual interactions between constituent motile units in biological systems. Examples where these phenomena can be observed simultaneously have been identified in recent experiments on bird flocks, fish schools and bacterial swarms. These results pose an intriguing question, which cannot be resolved by existing theories of active matter: How is the collective motion of these systems affected by the anomalous diffusion of the constituent units? Here, we answer this question for a microscopic model of active Levy matter -- a collection of active particles that perform superdiffusion akin to a Levy flight and interact by promoting polar alignment of their orientations. We present in details the derivation of the hydrodynamic equations of motion of the model, obtain from these equations the criteria for a disordered or ordered state, and apply linear stability analysis on these states at the onset of collective motion. Our analysis reveals that the disorder-order phase transition in active Levy matter is critical, in contrast to ordinary active fluids where the phase transition is, instead, first-order. Correspondingly, we estimate the critical exponents of the transition by finite size scaling analysis and use these numerical estimates to relate our findings to known universality classes. These results highlight the novel physics exhibited by active matter integrating both anomalous diffusive single-particle motility and inter-particle interactions.