We study the nonequilibrium steady-state of interacting photons in cavity arrays as described by the driven-dissipative Bose-Hubbard and spin-$1/2$ XY model. For this purpose, we develop a self-consistent expansion in the inverse coordination number of the array ($sim 1/z$) to solve the Lindblad master equation of these systems beyond the mean-field approximation. Our formalism is compared and benchmarked with exact numerical methods for small systems based on an exact diagonalization of the Liouvillian and a recently developed corner-space renormalization technique. We then apply this method to obtain insights beyond mean-field in two particular settings: (i) We show that the gas--liquid transition in the driven-dissipative Bose-Hubbard model is characterized by large density fluctuations and bunched photon statistics. (ii) We study the antibunching--bunching transition of the nearest-neighbor correlator in the driven-dissipative spin-$1/2$ XY model and provide a simple explanation of this phenomenon.
We study the dynamical equilibrium correlation function of the polaron-dressed tunneling operator in the dissipative two-state system. Unlike the position operator, this coherence operator acts in the full system-plus-reservoir space. We calculate the relevant modified influence functional and present the exact formal expression for the coherence correlations in the form of a series in the number of tunneling events. For an Ohmic spectral density with the particular damping strength $K=1/2$, the series is summed in analytic form for all times and for arbitrary values of temperature and bias. Using a diagrammatic approach, we find the long-time dynamics in the regime $K<1$. In general, the coherence correlations decay algebraically as $t^{-2K}$ at T=0. This implies that the linear static susceptibility diverges for $Kle 1/2$ as $Tto 0$, whereas it stays finite for $K>1/2$ in this limit. The qualitative differences with respect to the asymptotic behavior of the position correlations are explained.
We study the dynamics of nonlinear photonic lattices driven by two-photon parametric processes. By means of matrix-product-state based calculations, we show that a quantum many-body state with long-range hidden order can be generated from the vacuum. This order resembles that characterizing the Haldane insulator. A possible explanation highlighting the role of the symmetry of the drive, and the effect of photon loss are discussed. An implementation based in superconducting circuits is proposed and analyzed
In this Colloquium we discuss the anomalous kinetics of atoms in dissipative optical lattices, focusing on the ``Sisyphus laser cooling mechanism. The cooling scheme induces a friction force that decreases to zero for high atomic momentum, which in turn leads to unusual statistical features. We study, using a Fokker-Planck equation describing the semi-classical limit of the system, the shallow optical lattice regime where the momentum distribution of the particles is heavy-tailed and the spatial diffusion is anomalous. As the depth of the optical lattice is tuned, transitions in the dynamical properties of the system occur, for example a transition from Gaussian diffusion to a Levy walk and the breakdown of the Green-Kubo formula for the diffusion constant. Rare events, in both the momentum and spatial distributions, are described by non-normalized states, with tools adapted from infinite ergodic theory. We present experimental observations and elementary explanations for the physical mechanisms of cooling that lead to these anomalous behaviors, comparing theory with available experimental and numerical data.
We study the equilibrium correlation function of the polaron-dressed tunnelling operator in the dissipative two-state system and compare the asymptoptic dynamics with that of the position correlations. For an Ohmic spectral density with the damping strength $K=1/2$, the correlation functions are obtained in analytic form for all times at any $T$ and any bias. For $K<1$, the asymptotic dynamics is found by using a diagrammatic approach within a Coulomb gas representation. At T=0, the tunnelling or coherence correlations drop as $t^{-2K}$, whereas the position correlations show universal decay $propto t^{-2}$. The former decay law is a signature of unscreened attractive charge-charge interactions, while the latter is due to unscreened dipole-dipole interactions.
Spontaneous symmetry breaking (SSB) is a key concept in physics that for decades has played a crucial role in the description of many physical phenomena in a large number of different areas, like particle physics, cosmology, and condensed-matter physics. SSB is thus an ubiquitous concept connecting several, both high and low energy, areas of physics and many textbooks describe its basic features in great detail. However, to study the dynamics of symmetry breaking in the laboratory is extremely difficult. In condensed-matter physics, for example, tiny external disturbances cause a preference for the breaking of the symmetry in a particular configuration and typically those disturbances cannot be avoided in experiments. Notwithstanding these complications, here we describe an experiment, in which we directly observe the spontaneous breaking of the temporal phase of a driven system with respect to the drive into two distinct values differing by $pi$.