Do you want to publish a course? Click here

Spontaneous symmetry breaking in a driven-dissipative system

83   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Spontaneous symmetry breaking (SSB) is a key concept in physics that for decades has played a crucial role in the description of many physical phenomena in a large number of different areas, like particle physics, cosmology, and condensed-matter physics. SSB is thus an ubiquitous concept connecting several, both high and low energy, areas of physics and many textbooks describe its basic features in great detail. However, to study the dynamics of symmetry breaking in the laboratory is extremely difficult. In condensed-matter physics, for example, tiny external disturbances cause a preference for the breaking of the symmetry in a particular configuration and typically those disturbances cannot be avoided in experiments. Notwithstanding these complications, here we describe an experiment, in which we directly observe the spontaneous breaking of the temporal phase of a driven system with respect to the drive into two distinct values differing by $pi$.



rate research

Read More

We present a numerical study of a two-lane version of the stochastic non-equilibrium model known as the totally asymmetric simple exclusion process. For such a system with open boundaries, and suitably chosen values of externally-imposed particle injection ($alpha$) and ejection ($beta$) rates, spontaneous symmetry breaking can occur. We investigate the statistics and internal structure of the stochastically-induced transitions, or flips, which occur between opposite broken-symmetry states as the system evolves in time. From the distribution of time intervals separating successive flips, we show that the evolution of the associated characteristic times against externally-imposed rates yields information regarding the proximity to a critical point in parameter space. On short time scales, we probe for the possible existence of precursor events to a flip between opposite broken-symmetry states. We study an adaptation of domain-wall theory to mimic the density reversal process associated with a flip.
94 - Elad Shamriz , Nir Dror , 2016
We report results of the analysis of the spontaneous symmetry breaking (SSB) in the basic (actually, simplest) model which is capable to produce the SSB phenomenology in the one-dimensional setting. It is based on the Gross-Pitaevskii - nonlinear Schroedinger equation with the cubic self-attractive term and a double-well-potential built as an infinitely deep potential box split by a narrow (delta-functional) barrier. The barriers strength, epsilon, is the single free parameter of the scaled form of the model. It may be implemented in atomic Bose-Einstein condensates and nonlinear optics. The SSB bifurcation of the symmetric ground state (GS) is predicted analytically in two limit cases, viz., for deep or weak splitting of the potential box by the barrier. For the generic case, a variational approximation (VA) is elaborated. The analytical findings are presented along with systematic numerical results. Stability of stationary states is studied through the calculation of eigenvalues for small perturbations, and by means of direct simulations. The GS always undergoes the SSB bifurcation of the supercritical type, as predicted by the VA at moderate values of epsilon, although the VA fails at small epsilon, due to inapplicability of the underlying ansatz in that case. However, the latter case is correctly treated by the approximation based on a soliton ansatz. On top of the GS, the first and second excited states are studied too. The antisymmetric mode (the first excited state) is destabilized at a critical value of its norm. The second excited state undergoes the SSB bifurcation, like the GS, but, unlike it, the bifurcation produces an unstable asymmetric mode. All unstable modes tend to spontaneously reshape into the asymmetric GS.
We investigate a recently proposed non-Markovian random walk model characterized by loss of memories of the recent past and amnestically induced persistence. We report numerical and analytical results showing the complete phase diagram, consisting of 4 phases, for this system: (i) classical nonpersistence, (ii) classical persistence (iii) log-periodic nonpersistence and (iv) log-periodic persistence driven by negative feedback. The first two phases possess continuous scale invariance symmetry, however log-periodicity breaks this symmetry. Instead, log-periodic motion satisfies discrete scale invariance symmetry, with complex rather than real fractal dimensions. We find for log-periodic persistence evidence not only of statistical but also of geometric self-similarity.
We theoretically explore quantum correlation properties of a dissipative Bose-Hubbard dimer in presence of a coherent drive. In particular, we focus on the regime where the semiclassical theory predicts a bifurcation with a spontaneous spatial symmetry breaking. The critical behavior in a well defined thermodynamical limit of large excitation numbers is considered and analyzed within a Gaussian approach. The case of a finite boson density is also examined by numerically integrating the Lindblad master equation for the density matrix. We predict the critical behavior around the bifurcation points accompanied with large quantum correlations of the mixed steady-state, in particular exhibiting a peak in the logarithmic entanglement negativity.
Quantum adiabatic evolution, an important fundamental concept inphysics, describes the dynamical evolution arbitrarily close to the instantaneous eigenstate of a slowly driven Hamiltonian. In most systems undergoing spontaneous symmetry-breaking transitions, their two lowest eigenstates change from non-degenerate to degenerate. Therefore, due to the corresponding energy-gap vanishes, the conventional adiabatic condition becomes invalid. Here we explore the existence of quantum adiabatic evolutions in spontaneous symmetry-breaking transitions and derive a symmetry-dependent adiabatic condition. Because the driven Hamiltonian conserves the symmetry in the whole process, the transition between different instantaneous eigenstates with different symmetries is forbidden. Therefore, even if the minimum energy-gap vanishes, symmetry-protected quantum adiabatic evolutioncan still appear when the driven system varies according to the symmetry-dependent adiabatic condition. This study not only advances our understandings of quantum adiabatic evolution and spontaneous symmetry-breaking transitions, but also provides extensive applications ranging from quantum state engineering, topological Thouless pumping to quantum computing.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا