Do you want to publish a course? Click here

Exploratory X-ray Monitoring of Luminous Radio-Quiet Quasars at High Redshift: No Evidence for Evolution in X-ray Variability

92   0   0.0 ( 0 )
 Added by Ohad Shemmer
 Publication date 2017
  fields Physics
and research's language is English
 Authors Ohad Shemmer




Ask ChatGPT about the research

We report on the second installment of an X-ray monitoring project of seven luminous radio-quiet quasars (RQQs). New {sl Chandra} observations of four of these, at $4.10leq zleq4.35$, yield a total of six X-ray epochs, per source, with temporal baselines of $sim850-1600$ days in the rest frame. These data provide the best X-ray light curves for RQQs at $z>4$, to date, enabling qualitative investigations of the X-ray variability behavior of such sources for the first time. On average, these sources follow the trend of decreasing variability amplitude with increasing luminosity, and there is no evidence for X-ray variability increasing toward higher redshifts, in contrast with earlier predictions of potential evolutionary scenarios. An ensemble variability structure function reveals that their variability level remains relatively flat across $approx20 - 1000$ days in the rest frame and it is generally lower than that of three similarly luminous RQQs at $1.33leq zleq 2.74$ over the same temporal range. We discuss possible explanations for the increased variability of the lower-redshift subsample and, in particular, whether higher accretion rates play a leading role. Near-simultaneous optical monitoring of the sources at $4.10leq zleq 4.35$ indicates that none is variable on $approx1$-day timescales, although flux variations of up to $sim25$% are observed on $approx100$-day timescales, typical of RQQs at similar redshifts. Significant optical-X-ray spectral slope variations observed in two of these sources are consistent with the levels observed in luminous RQQs and are dominated by X-ray variations.



rate research

Read More

We present new X-ray observations of luminous heavily dust-reddened quasars (HRQs) selected from infrared sky surveys. HRQs appear to be a dominant population at high redshifts and the highest luminosities, and may be associated with a transitional blowout phase of black hole and galaxy co-evolution models. Despite this, their high-energy properties have been poorly known. We use the overall sample of $10$ objects with XMM-Newton coverage to study the high-energy properties of HRQs at $left< L_{rm bol} right> = 10^{47.5}$ erg/s and $left< z right>= 2.5$. For the seven sources with strong X-ray detections, we perform spectral analyses. These find a median X-ray luminosity of $left< L_{rm 2-10,keV} right> = 10^{45.1}$ erg/s, comparable to the most powerful X-ray quasars known. The gas column densities are $N_{rm H}=(1$-$8)times 10^{22}$ cm$^{-2}$, in agreement with the amount of dust extinction observed. The dust to gas ratios are sub-Galactic, but are higher than found in local AGN. The intrinsic X-ray luminosities of HRQs are weak compared to the mid-infrared ($L_{rm 6mu m}$) and bolometric luminosities ($L_{rm bol}$), in agreement with findings for other luminous quasar samples. For instance, the X-ray to bolometric corrections range from $kappa_{rm bol}approx 50$-$3000$. The moderate absorption levels and accretion rates close to the Eddington limit ($left< lambda_{rm Edd} right>=1.06$) are in agreement with a quasar blowout phase. Indeed, we find that the HRQs lie in the forbidden region of the $N_{rm H}$-$lambda_{rm Edd}$ plane, and therefore that radiation pressure feedback on the dusty interstellar medium may be driving a phase of blowout that has been ongoing for a few $10^{5}$ years. The wider properties, including [OIII] narrow-line region kinematics, broadly agree with this interpretation.
Many upcoming surveys, particularly in the radio and optical domains, are designed to probe either the temporal and/or the spatial variability of a range of astronomical objects. In the light of these high resolution surveys, we review the subject of ultra-luminous X-ray (ULX) sources, which are thought to be accreting black holes for the most part. We also discuss the sub-class of ULXs known as the hyper-luminous X-ray sources, which may be accreting intermediate mass black holes. We focus on some of the open questions that will be addressed with the new facilities, such as the mass of the black hole in ULXs, their temporal variability and the nature of the state changes, their surrounding nebulae and the nature of the region in which ULXs reside.
We report NuSTAR observations of a sample of six X-ray weak broad absorption line (BAL) quasars. These targets, at z=0.148-1.223, are among the optically brightest and most luminous BAL quasars known at z<1.3. However, their rest-frame 2 keV luminosities are 14 to >330 times weaker than expected for typical quasars. Our results from a pilot NuSTAR study of two low-redshift BAL quasars, a Chandra stacking analysis of a sample of high-redshift BAL quasars, and a NuSTAR spectral analysis of the local BAL quasar Mrk 231 have already suggested the existence of intrinsically X-ray weak BAL quasars, i.e., quasars not emitting X-rays at the level expected from their optical/UV emission. The aim of the current program is to extend the search for such extraordinary objects. Three of the six new targets are weakly detected by NuSTAR with <45 counts in the 3-24 keV band, and the other three are not detected. The hard X-ray (8-24 keV) weakness observed by NuSTAR requires Compton-thick absorption if these objects have nominal underlying X-ray emission. However, a soft stacked effective photon index ({Gamma}~1.8) for this sample disfavors Compton-thick absorption in general. The uniform hard X-ray weakness observed by NuSTAR for this and the pilot samples selected with <10 keV weakness also suggests that the X-ray weakness is intrinsic in at least some of the targets. We conclude that the NuSTAR observations have likely discovered a significant population (>33%) of intrinsically X-ray weak objects among the BAL quasars with significantly weak <10 keV emission. We suggest that intrinsically X-ray weak quasars might be preferentially observed as BAL quasars.
We report spectral, imaging, and variability results from four new XMM-Newton observations and two new Chandra observations of high-redshift (z > 4) radio-loud quasars (RLQs). Our targets span lower, and more representative, values of radio loudness than those of past samples of high-redshift RLQs studied in the X-ray regime. Our spectral analyses show power-law X-ray continua with a mean photon index, Gamma =1.74 +/- 0.11, that is consistent with measurements of lower redshift RLQs. These continua are likely dominated by jet-linked X-ray emission, and they follow the expected anti-correlation between photon index and radio loudness. We find no evidence of iron Kalpha ~ emission lines or Compton-reflection continua. Our data also constrain intrinsic X-ray absorption in these RLQs. We find evidence for significant absorption (N_H ~ 10^22 cm^-2) in one RLQ of our sample (SDSS J0011+1446); the incidence of X-ray absorption in our sample appears plausibly consistent with that for high-redshift RLQs that have higher values of radio loudness. In the Chandra observation of PMN J221-2719 we detect apparent extended (~ 14 kpc) X-ray emission that is most likely due to a jet; the X-ray luminosity of this putative jet is ~2% that of the core. The analysis of a 4.9 GHz VLA image of PMN J221-2719 reveals a structure that matches the X-ray extension found in this source. We also find evidence for long-term (450-460 days) X-ray variability by 80-100% in two of our targets.
156 - Minhua Zhou , Minfeng Gu 2020
We present the study on the X-ray emission for a sample of radio-detected quasars constructed from the cross-matches between SDSS, FIRST catalogs and XMM-Newton archives. A sample of radio-quiet SDSS quasars without FIRST radio detection is also assembled for comparison. We construct the optical and X-ray composite spectra normalized at rest frame $4215,rm AA$ (or $2200,rm AA$) for both radio-loud quasars (RLQs) and radio-quiet quasars (RQQs) at $zle3.2$, with matched X-ray completeness of 19%, redshift and optical luminosity. While the optical composite spectrum of RLQs is similar to that of RQQs, we find that RLQs have higher X-ray composite spectrum than RQQs, consistent with previous studies in the literature. By dividing the radio-detected quasars into radio loudness bins, we find the X-ray composite spectra are generally higher with increasing radio loudness. Moreover, a significant correlation is found between the optical-to-X-ray spectral index and radio loudness, and there is a unified multi-correlation between the radio, X-ray luminosities and radio loudness in radio-detected quasars. These results could be possibly explained with the corona-jet model, in which the corona and jet are directly related.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا