Do you want to publish a course? Click here

Weak Hard X-ray Emission from Broad Absorption Line Quasars: Evidence for Intrinsic X-ray Weakness

185   0   0.0 ( 0 )
 Added by Bin Luo
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report NuSTAR observations of a sample of six X-ray weak broad absorption line (BAL) quasars. These targets, at z=0.148-1.223, are among the optically brightest and most luminous BAL quasars known at z<1.3. However, their rest-frame 2 keV luminosities are 14 to >330 times weaker than expected for typical quasars. Our results from a pilot NuSTAR study of two low-redshift BAL quasars, a Chandra stacking analysis of a sample of high-redshift BAL quasars, and a NuSTAR spectral analysis of the local BAL quasar Mrk 231 have already suggested the existence of intrinsically X-ray weak BAL quasars, i.e., quasars not emitting X-rays at the level expected from their optical/UV emission. The aim of the current program is to extend the search for such extraordinary objects. Three of the six new targets are weakly detected by NuSTAR with <45 counts in the 3-24 keV band, and the other three are not detected. The hard X-ray (8-24 keV) weakness observed by NuSTAR requires Compton-thick absorption if these objects have nominal underlying X-ray emission. However, a soft stacked effective photon index ({Gamma}~1.8) for this sample disfavors Compton-thick absorption in general. The uniform hard X-ray weakness observed by NuSTAR for this and the pilot samples selected with <10 keV weakness also suggests that the X-ray weakness is intrinsic in at least some of the targets. We conclude that the NuSTAR observations have likely discovered a significant population (>33%) of intrinsically X-ray weak objects among the BAL quasars with significantly weak <10 keV emission. We suggest that intrinsically X-ray weak quasars might be preferentially observed as BAL quasars.



rate research

Read More

136 - Hezhen Liu , B. Luo , W. N. Brandt 2018
We present combined $approx 14-37~rm ks$ Chandra observations of seven $z = 1.6-2.7$ broad absorption line (BAL) quasars selected from the Large Bright Quasar Survey (LBQS). These seven objects are high-ionization BAL (HiBAL) quasars, and they were undetected in the Chandra hard band ($2-8$ keV) in previous observations. The stacking analyses of previous Chandra observations suggested that these seven objects likely contain some candidates for intrinsically X-ray weak BAL quasars. With the new Chandra observations, six targets are detected. We calculate their effective power-law photon indices and hard-band flux weakness, and find that two objects, LBQS $1203+1530$ and LBQS $1442-0011$, show soft/steep spectral shapes ($Gamma_{rm eff}= 2.2^{+0.9}_{-0.9}$ and $1.9_{-0.8}^{+0.9}$) and significant X-ray weakness in the hard band (by factors of $approx$ 15 and 12). We conclude that the two HiBAL quasars are good candidates for intrinsically X-ray weak BAL quasars. The mid-infrared-to-UV spectral energy distributions (SEDs) of the two candidates are consistent with those of typical quasars. We constrain the fraction of intrinsically X-ray weak AGNs among HiBAL quasars to be $approx 7-10%$ ($2/29-3/29$), and we estimate it is $approx 6- 23%$ ($2/35-8/35$) among the general BAL quasar population. Such a fraction is considerably larger than the fraction among non-BAL quasars, and we suggest that intrinsically X-ray weak quasars are preferentially observed as BAL quasars. Intrinsically X-ray weak AGNs likely comprise a small minority of the luminous type 1 AGN population, and they should not affect significantly the completeness of these AGNs found in deep X-ray surveys.
67 - Andrea Marlar 2018
We present XMM-Newton imaging spectroscopy of ten weak emission-line quasars (WLQs) at $0.928leq z leq 3.767$, six of which are radio quiet and four which are radio intermediate. The new X-ray data enabled us to measure the power-law photon index, at rest-frame energies $>2$ keV, in each source with relatively high accuracy. These measurements allowed us to confirm previous reports that WLQs have steeper X-ray spectra, suggesting higher accretion rates with respect to typical quasars. A comparison between the photon indices of our radio-quiet WLQs and those of a control sample of 85 sources shows that the first are significantly higher, at the >~$3sigma$ level. Collectively, the four radio-intermediate WLQs have lower photon indices with respect to the six radio-quiet WLQs, as may be expected if the spectra of the first group are contaminated by X-ray emission from a jet. Therefore, in the absence of significant jet emission along our line of sight, these results are in agreement with the idea that WLQs constitute the extreme high end of the accretion rate distribution in quasars. We detect soft excess emission in our lowest-redshift radio-quiet WLQ, in agreement with previous findings suggesting that the prominence of this feature is associated with a high accretion rate. We have not detected signatures of Compton reflection, Fe K$alpha$ lines, or strong variability between two X-ray epochs in any of our WLQs, which can be attributed to their relatively high luminosity.
Broad absorption line quasars (commonly termed BALQSOs) contain the most dramatic examples of AGN-driven winds. The high absorbing columns in these winds, ~10^24 cm^-2, ensure that BALQSOs are generally X-ray faint. This high X-ray absorption means that almost all BALQSOs have been discovered through optical surveys, and so what little we know about their X-ray properties is derived from very bright optically-selected sources. A small number of X-ray selected BALQSOs (XBALQSOs) have, however, recently been found in deep X-ray survey fields. In this paper we investigate the X-ray and rest-frame UV properties of five XBALQSOs for which we have obtained XMM-Newton EPIC X-ray spectra and deep optical imaging and spectroscopy. We find that, although the XBALQSOs have an alpha_ox steeper by ~0.5 than normal QSOs, their median alpha_ox is nevertheless flatter by 0.30 than that of a comparable sample of optically selected BALQSOs (OBALQSOs). We rule out the possibility that the higher X-ray to optical flux ratio is due to intrinsic optical extinction. We find that the amount of X-ray and UV absorption due to the wind in XBALQSOs is similar, or perhaps greater than, the corresponding wind absorption in OBALQSOs, so the flatter alpha_ox cannot be a result of weaker wind absorption. We conclude that these XBALQSOs have intrinsically higher X-ray to optical flux ratios than the OBALQSO sample with which we compare them.
We present a study of the central engine in the broad-line radio galaxy 3C 109. To investigate the immediate surrounding of this accreting, supermassive black hole, we perform a multi-epoch broad-band spectral analysis of a joint NuSTAR/XMM observation (2017), an archival xmm observation (2005) and the 105-month averaged Swift-BAT data. We are able to clearly separate the spectrum into a primary continuum, neutral and ionized absorption, and a reflection component. The photon index of the primary continuum has changed since 2005 ($Gamma = 1.61 substack{+0.02 -0.01} rightarrow 1.54 pm{0.02}$), while other components remain unchanged, indicative of minimal geometric changes to the central engine. We constrain the high-energy cutoff of 3C 109 (E$_{text{cut}}= 49 substack{+7 -5}$,keV ) for the first time. The reflector is found to be ionized (log $xi$ = $2.3 substack{+0.1 -0.2}$) but no relativistic blurring is required by the data. SED analysis confirms the super-Eddington nature of 3C 109 initially ($lambda_{Edd} >$ 2.09). However, we do not find any evidence for strong reflection (R = $0.18 substack{+0.04 -0.03}$) or a steep power law index, as expected from a super-Eddington source. This puts the existing virial mass estimate of 2 $times 10^{8}$M$_{odot}$ into question. We explore additional ways of estimating the Eddington ratio, some of which we find to be inconsistent with our initial SED estimate. We obtain a new black hole mass estimate of 9.3 $times 10^{8}$M$_{odot}$, which brings all Eddington ratio estimates into agreement and does not require 3C 109 to be super-Eddington.
(Abridged) We report on the X-ray and multiwavelength properties of 11 radio-quiet quasars with weak or no emission lines identified by the Sloan Digital Sky Survey (SDSS) with redshift z=0.4-2.5. The distribution of relative X-ray brightness for our low-redshift weak-line quasar (WLQ) candidates is significantly different from that of typical radio-quiet quasars, having an excess of X-ray weak sources, but it is consistent with that of high-redshift WLQs. The X-ray weak sources generally show similar UV emission-line properties to those of the X-ray weak quasar PHL 1811; they may belong to the notable class of PHL 1811 analogs. The average X-ray spectrum of these sources is somewhat harder than that of typical radio-quiet quasars. Several other low-redshift WLQ candidates have normal ratios of X-ray-to-optical/UV flux, and their average X-ray spectral properties are also similar to those of typical radio-quiet quasars. The X-ray weak and X-ray normal WLQ candidates may belong to the same subset of quasars having high-ionization shielding gas covering most of the wind-dominated broad emission-line region, but be viewed at different inclinations. The mid-infrared-to-X-ray spectral energy distributions (SEDs) of these sources are generally consistent with those of typical SDSS quasars, showing that they are not likely to be BL Lac objects with relativistically boosted continua and diluted emission lines. However, one source in our X-ray observed sample is remarkably strong in X-rays, indicating that a small fraction of low-redshift WLQ candidates may actually be BL Lacs residing in the radio-faint tail of the BL Lac population. We also investigate universal selection criteria for WLQs over a wide range of redshift, finding that it is not possible to select WLQ candidates in a fully consistent way using different prominent emission lines as a function of redshift.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا