Do you want to publish a course? Click here

MERGHERS: An SZ-selected cluster survey with MeerKAT

77   0   0.0 ( 0 )
 Added by Kenda Knowles
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The MeerKAT telescope will be one of the most sensitive radio arrays in the pre-SKA era. Here we discuss a low-frequency SZ-selected cluster survey with MeerKAT, the MeerKAT Extended Relics, Giant Halos, and Extragalactic Radio Sources (MERGHERS) survey. The primary goal of this survey is to detect faint signatures of diffuse cluster emission, specifically radio halos and relics. SZ-selected cluster samples offer a homogeneous, mass-limited set of targets out to higher redshift than X-ray samples. MeerKAT is sensitive enough to detect diffuse radio emission at the faint levels expected in low-mass and high-redshift clusters, thereby enabling radio halo and relic formation theories to be tested with a larger statistical sample over a significantly expanded phase space. Complementary multiwavelength follow-up observations will provide a more complete picture of any clusters found to host diffuse emission, thereby enhancing the scientific return of the MERGHERS survey.



rate research

Read More

The MeerKAT Exploration of Relics, Giant Halos, and Extragalactic Radio Sources (MERGHERS) survey is a planned project to study a large statistical sample of galaxy clusters with the MeerKAT observatory. Here we present the results of a 16--hour pilot project, observed in response to the 2019 MeerKAT Shared Risk proposal call, to test the feasibility of using MeerKAT for a large cluster study using short (0.2--2.1,hour) integration times. The pilot focuses on 1.28,GHz observations of 13 massive, low-to-intermediate redshift ($0.22 < z < 0.65$) clusters from the Sunyaev-Zeldovich-selected Atacama Cosmology Telescope (ACT) DR5 catalogue that show multiwavelength indications of dynamical disturbance. With a 70 per cent detection rate (9/13 clusters), this pilot study validates our proposed MERGHERS observing strategy and provides twelve detections of diffuse emission, eleven of them new, indicating the strength of MeerKAT for such types of studies. The detections (signal-to-noise ratio $gtrsim6$) are summarised as follows: two systems host both relic(s) and a giant radio halo, five systems host radio halos, and two have candidate radio halos. Power values, $k$-corrected to 1.4 GHz assuming a fiducial spectral index of $alpha = -1.3 pm 0.4$, are consistent with known radio halo and relic scaling relations.
We discuss the ground-breaking science that will be possible with a wide area survey, using the MeerKAT telescope, known as MeerKLASS (MeerKAT Large Area Synoptic Survey). The current specifications of MeerKAT make it a great fit for science applications that require large survey speeds but not necessarily high angular resolutions. In particular, for cosmology, a large survey over $sim 4,000 , {rm deg}^2$ for $sim 4,000$ hours will potentially provide the first ever measurements of the baryon acoustic oscillations using the 21cm intensity mapping technique, with enough accuracy to impose constraints on the nature of dark energy. The combination with multi-wavelength data will give unique additional information, such as exquisite constraints on primordial non-Gaussianity using the multi-tracer technique, as well as a better handle on foregrounds and systematics. Such a wide survey with MeerKAT is also a great match for HI galaxy studies, providing unrivalled statistics in the pre-SKA era for galaxies resolved in the HI emission line beyond local structures at z > 0.01. It will also produce a large continuum galaxy sample down to a depth of about 5,$mu$Jy in L-band, which is quite unique over such large areas and will allow studies of the large-scale structure of the Universe out to high redshifts, complementing the galaxy HI survey to form a transformational multi-wavelength approach to study galaxy dynamics and evolution. Finally, the same survey will supply unique information for a range of other science applications, including a large statistical investigation of galaxy clusters as well as produce a rotation measure map across a huge swathe of the sky. The MeerKLASS survey will be a crucial step on the road to using SKA1-MID for cosmological applications and other commensal surveys, as described in the top priority SKA key science projects (abridged).
SPT-CLJ2040-4451 -- spectroscopically confirmed at z = 1.478 -- is the highest redshift galaxy cluster yet discovered via the Sunyaev-Zeldovich effect. SPT-CLJ2040-4451 was a candidate galaxy cluster identified in the first 720 deg^2 of the South Pole Telescope Sunyaev-Zeldovich (SPT-SZ) survey, and confirmed in follow-up imaging and spectroscopy. From multi-object spectroscopy with Magellan-I/Baade+IMACS we measure spectroscopic redshifts for 15 cluster member galaxies, all of which have strong [O II] 3727 emission. SPT-CLJ2040-4451 has an SZ-measured mass of M_500,SZ = 3.2 +/- 0.8 X 10^14 M_Sun/h_70, corresponding to M_200,SZ = 5.8 +/- 1.4 X 10^14 M_Sun/h_70. The velocity dispersion measured entirely from blue star forming members is sigma_v = 1500 +/- 520 km/s. The prevalence of star forming cluster members (galaxies with > 1.5 M_Sun/yr) implies that this massive, high-redshift cluster is experiencing a phase of active star formation, and supports recent results showing a marked increase in star formation occurring in galaxy clusters at z >1.4. We also compute the probability of finding a cluster as rare as this in the SPT-SZ survey to be >99%, indicating that its discovery is not in tension with the concordance Lambda-CDM cosmological model.
98 - Sowgat Muzahid 2017
We report on the detection of three strong HI absorbers originating in the outskirts (i.e., impact parameter, $rho_{rm cl} approx (1.6-4.7) r_{500}$) of three massive ($M_{500}sim3times10^{14} M_{odot}$) clusters of galaxies at redshift $z_{rm cl} approx 0.46$, in the $Hubble Space Telescope$ Cosmic Origins Spectrograph ($HST$/COS) spectra of 3 background UV-bright quasars. These clusters were discovered by the 2500 deg$^2$ South Pole Telescope Sunyaev$-$Zeldovich (SZ) effect survey. All three COS spectra show partial Lyman limit absorber with $N(HI) > 10^{16.5} rm cm^{-2}$ near the photometric redshifts ($|Delta z/(1+z)| approx 0.03$) of the clusters. The compound probability of random occurrence of all three absorbers is $<0.02$%, indicating that the absorbers are most likely related to the targeted clusters. We find that the outskirts of these SZ-selected clusters are remarkably rich in cool gas compared to existing observations of other clusters in the literature. The effective Doppler parameters of the Lyman series lines, obtained using single cloud curve-of-growth (COG) analysis, suggest a non-thermal/turbulent velocity of a few $times10 rm km s^{-1}$ in the absorbing gas. We emphasize the need for uniform galaxy surveys around these fields and for more UV observations of QSO-cluster pairs in general in order to improve the statistics and gain further insights into the unexplored territory of the largest collapsed cosmic structures.
The Cluster Lensing And Supernova survey with Hubble (CLASH) is a 524-orbit multi-cycle treasury program to use the gravitational lensing properties of 25 galaxy clusters to accurately constrain their mass distributions. The survey, described in detail in this paper, will definitively establish the degree of concentration of dark matter in the cluster cores, a key prediction of CDM. The CLASH cluster sample is larger and less biased than current samples of space-based imaging studies of clusters to similar depth, as we have minimized lensing-based selection that favors systems with overly dense cores. Specifically, twenty CLASH clusters are solely X-ray selected. The X-ray selected clusters are massive (kT > 5 keV; 5 - 30 x 10^14 M_solar) and, in most cases, dynamically relaxed. Five additional clusters are included for their lensing strength (Einstein radii > 35 arcsec at z_source = 2) to further quantify the lensing bias on concentration, to yield high resolution dark matter maps, and to optimize the likelihood of finding highly magnified high-redshift (z > 7) galaxies. The high magnification, in some cases, provides angular resolutions unobtainable with any current UVOIR facility and can yield z > 7 candidates bright enough for spectroscopic follow-up. A total of 16 broadband filters, spanning the near-UV to near-IR, are employed for each 20-orbit campaign on each cluster. These data are used to measure precise (sigma_phz < 0.02(1+z)) photometric redshifts for dozens of newly discovered multiply-lensed images per cluster. Observations of each cluster are spread over 8 epochs to enable a search, primarily in the parallel fields, for Type Ia supernovae at z > 1 to improve constraints on the time dependence of the dark energy equation of state and the evolution of such supernovae in an epoch when the universe is matter dominated.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا