Do you want to publish a course? Click here

Detailed chemical composition of classical Cepheids in the LMC cluster NGC 1866 and in the field of the SMC

127   0   0.0 ( 0 )
 Added by Bertrand Lemasle
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Context: Cepheids are excellent tracers of young stellar populations. They play a crucial role in astrophysics as standard candles. The chemistry of classical Cepheids in the Milky Way is now quite well-known. Despite a much larger sample, the chemical composition of Magellanic Cepheids has been only scarcely investigated. Aims: For the first time, we study the chemical composition of several Cepheids located in the same populous cluster: NGC 1866, in the Large Magellanic Cloud (LMC). To also investigate the chemical composition of Cepheids at lower metallicity, four targets are located in the Small Magellanic Cloud (SMC). Our sample allows us to increase the number of Cepheids with known metallicities in the LMC/SMC by 20%/25% and the number of Cepheids with detailed chemical composition in the LMC/SMC by 46%/50%. Methods: We use canonical spectroscopic analysis to determine the chemical composition of Cepheids and provide abundances for a good number of $alpha$, iron-peak and neutron-capture elements. Results: We find that six Cepheids in the LMC cluster NGC 1866 have a very homogeneous chemical composition, also consistent with red giant branch (RGB) stars in the cluster. Period--age relations that include no or average rotation indicate that all the Cepheids in NGC 1866 have a similar age and therefore belong to the same stellar population. Our results are in good agreement with theoretical models accounting for luminosity and radial velocity variations. Using distances based on period-luminosity relations in the near- or mid-infrared, we investigate for the first time the metallicity distribution of the young population in the SMC in the depth direction. Preliminary results show no metallicity gradient along the SMC main body, but our sample is small and does not contain Cepheids in the inner few degrees of the SMC.



rate research

Read More

72 - Vincenzo Testa 2006
Near infrared (IR) studies of Cepheid variables in the LMC take advantage of the reduced light curve amplitude and metallicity dependence at these wavelengths. This work presents such photometry for two young clusters known to contain sizeable Cepheid populations: NGC 1866 and NGC 2031. Our goal is to determine light curves and period-luminosity (PL) relations in the near-IR, to assess the similarity between cluster and field pulsators, and to examine the predictive capability of current pulsation models. The light curves are obtained from multiwavelength broadband J,H,Ks photometry of Cepheids in both clusters, with periods previously established from optical photometry. Mean magnitudes for the Cepheids are used to construct PL relations in the near-IR. The properties in the PL planes are compared with the behavior of field Cepheids in the LMC and with the predictions of recent pulsational models, both canonical and overluminous. Cluster and field Cepheids are homogeneous and the inclusion of the cluster Cepheids in the field sample extends nicely the PL relation. The slope of the PL relation is constant over the whole period range and does not show -- at least in the adopted IR bands -- the break in slope at P ~ 10 d reported by some authors. A comparison with the predictions of pulsation models allows an estimate for the distance moduli of NGC 1866 and NGC 2031. The two clusters are found to lie at essentially the same distance. Fitting of theoretical models to the data gives, for the K filter, (m-M)_0 = 18.62+-0.10 if canonical models are used and (m-M)_0 = 18.42+-0.10 if overluminous models are used. On the basis of this result, some considerations on the relationship between the clusters and the internal structure of the LMC are presented.
58 - M. Salaris 2003
We use the Main Sequence stars in the LMC cluster NGC 1866 and of Red Clump stars in the local field to obtain two independent estimates of the LMC distance. We apply an empirical Main Sequence-fitting technique based on a large sample of subdwarfs with accurate {sl Hipparcos} parallaxes in order to estimate the cluster distance modulus, and the multicolor Red Clump method to derive distance and reddening of the LMC field. We find that the Main Sequence-fitting and the Red Clump distance moduli are in significant disagreement; NGC 1866 distance is equal to $rm (m-M)_{0,NGC 1866}=18.33pm$0.08 (consistent with a previous estimate using the same data and theoretical Main Sequence isochrones), while the field stars provide $rm (m-M)_{0,field}=18.53pm$0.07. This difference reflects the more general dichotomy in the LMC distance estimates found in the literature. Various possible causes for this disagreement are explored, with particular attention paid to the still uncertain metallicity of the cluster and the star formation history of the field stars.
125 - A. Mucciarelli 2010
We present new FLAMES@VLT spectroscopic observations of 30 stars in the field of the LMC stellar cluster NGC 1866. NGC 1866 is one of the few young and massive globular cluster that is close enough so that its stars can be individually studied in detail. Radial velocities have been used to separate stars belonging to the cluster and to the LMC field and the same spectra have been used to derive chemical abundances for a variety of elements, from [Fe/H] to the light (i.e. Na, O, Mg...) to the heavy ones. The average iron abundance of NGC 1866 turns out to be [Fe/H]= -0.43+-0.01 dex (with a dispersion of 0.04 dex), from the analysis of 14 cluster-member stars. Within our uncertainties, the cluster stars are homogeneous, as far as chemical composition is concerned, independent of the evolutionary status. The observed cluster stars do not show any sign of the light elements anti-correlation present in all the Galactic globular clusters so far studied, and also found in the old LMC stellar clusters. A similar lack of anti-correlations has been detected in the massive intermediate-age LMC clusters, indicating a different formation/evolution scenario for the LMC massive clusters younger than ~3 Gyr with respect to the old ones. Also opposite to the Galactic globulars, the chemical composition of the older RGB field stars and of the young post-MS cluster stars show robust homogeneity suggesting a quite similar process of chemical evolution. The field and cluster abundances are in agreement with recent chemical analysis of LMC stars, which show a distinctive chemical pattern for this galaxy with respect to the Milky Way. We discuss these findings in light of the theoretical scenario of chemical evolution of the LMC.
129 - A. K. Dupree 2017
High-resolution spectroscopic observations were taken of 29 extended main sequence turn-off (eMSTO) stars in the young ($sim$200 Myr) LMC cluster, NGC 1866 using the Michigan/Magellan Fiber System and MSpec spectrograph on the Magellan-Clay 6.5-m telescope. These spectra reveal the first direct detection of rapidly rotating stars whose presence has only been inferred from photometric studies. The eMSTO stars exhibit H-alpha emission (indicative of Be-star decretion disks), others have shallow broad H-alpha absorption (consistent with rotation $gtrsim $150 km s$^{-1}$), or deep H-alpha core absorption signaling lower rotation velocities ($ lesssim $150 km s$^{-1}$ ). The spectra appear consistent with two populations of stars - one rapidly rotating, and the other, younger and slowly rotating.
101 - E. Sabbi , A. Nota , M. Tosi 2011
We use deep images acquired with the Advanced Camera for Surveys (ACS) on board of the Hubble Space Telescope (HST) in the filters F555W and F814W to characterize the properties of NGC 376, a young star cluster located in the wing of the Small Magellanic Cloud (SMC). Using isochrone fitting we derive for NGC 376 an age of 28+/-7 Myr, in good agreement with previous studies. The high spatial resolution ACS data allow us to determine the center of gravity of the cluster and to construct extended surface brightness and radial density profiles. Neither of these profiles can be fitted with a theoretical model, suggesting that the cluster is not in virial equilibrium. Considering the young age of the cluster, we speculate that the distortion of the radial profiles may be the result of the rapid gas dispersal that follows the initial phase of star formation. The cluster shows clear evidence of dynamical mass segregation. From the properties of the radial profiles and the present day mass function (PDMF) we conclude that NGC 376 appears to have already lost nearly 90% of its initial stellar mass, probably as a consequence of the sudden gas dispersal that follows the early phase of star formation (SF).
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا