Do you want to publish a course? Click here

Could the low braking index pulsar PSR J1734-3333 evolve into a magnetar?

132   0   0.0 ( 0 )
 Added by Zhi-Fu Gao
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The low braking-index pulsar PSR J1734$-$3333 could be born with superhigh internal magnetic fields $B_{rm in}sim10^{15}-10^{16}$ G, and undergo a supercritical accretion soon after its formation in a supernova explosion. The buried multipole magnetic fields will merger into a dipole magnetic field. Since the magnetic flow transfers from the core to the crust of the pulsar, its surface dipole field grows quickly at a power-law form assumed until it saturates at the level of internal dipole field. The increase in surface dipole magnetic field results in the observed low braking index of $n=0.9(2)$. Keeping an average field growth index $varepsilon=1.34(6)$, this pulsar will become a magnetar with surface dipole magnetic field at the equator $B_{rm d}sim 2.6(1)times 10^{14}$,G and $sim 5.3(2)times 10^{14}$,G after next 50,kyrs and 100,kys, respectively.



rate research

Read More

135 - X. W. Liu , R. X. Xu , G. J. Qiao 2012
The very small braking index of PSR J1734-3333, $n=0.9pm0.2$, challenges the current theories of braking mechanisms in pulsars. We present a possible interpretation that this pulsar is surrounded by a fall-back disk and braked by it. A modified braking torque is proposed based on the competition between the magnetic energy density of a pulsar and the kinetic energy density of a fall-back disk. With this torque, a self-similar disk can fit all the observed parameters of PSR J1734-3333 with natural initial parameters. In this regime, the star will evolve to the region having anomalous X-ray pulsars and soft gamma repeaters in the $P-dot{P}$ diagram in about 20000 years and stay there for a very long time. The mass of the disk around PSR J1734-3333 in our model is about $10M_{oplus}$, similar to the observed mass of the disk around AXP 4U 0142+61.
125 - S. Caliskan 2012
Recent measurements showed that the period derivative of the high-B radio pulsar PSR J1734-3333 is increasing with time. For neutron stars evolving with fallback disks, this rotational behavior is expected in certain phases of the long-term evolution. Using the same model as employed earlier to explain the evolution of anomalous X-ray pulsars and soft gamma-ray repeaters, we show that the period, the first and second period derivatives and the X-ray luminosity of this source can simultaneously acquire the observed values for a neutron star evolving with a fallback disk. We find that the required strength of the dipole field that can produce the source properties is in the range of 10^{12} - 10^{13} G on the pole of the neutron star. When the model source reaches the current state properties of PSR J1734-3333, accretion onto the star has not started yet, allowing the source to operate as a regular radio pulsar. Our results imply that PSR J1734-3333 is at an age of ~ 3 x 10^4 - 2 x 10^5 years. Such sources will have properties like the X-ray dim isolated neutron stars or transient AXPs at a later epoch of weak accretion from the diminished fallback disk.
We present a phase-coherent timing solution for PSR J1640-4631, a young 206 ms pulsar using X-ray timing observations taken with NuSTAR. Over this timing campaign, we have measured the braking index of PSR J1640-4631 to be n = 3.15+/-0.03. Using a series of simulations, we argue that this unusually high braking index is not due to timing noise, but is intrinsic to the pulsars spin-down. We cannot, however, rule out contamination due to an unseen glitch recovery, although the recovery timescale would have to be longer than most yet observed. If this braking index is eventually proven to be stable, it demonstrates that pulsar braking indices greater than 3 are allowed in nature, hence other physical mechanisms such as mass or magnetic quadrupoles are important in pulsar spin-down. We also present a 3-sigma upper limit on the pulsed flux at 1.4 GHz of 0.018 mJy.
PSR J1846-0258 is an object which straddles the boundary between magnetars and rotation powered pulsars. Though behaving for many years as a rotation-powered pulsar, in 2006, it exhibited distinctly magnetar-like behavior - emitting several short hard X-ray bursts, and a flux increase. Here we report on 7 years of post-outburst timing observations of PSR J1846-0258 using the Rossi X-ray Timing Explorer and the Swift X-ray Telescope. We measure the braking index over the post-magnetar outburst period to be $n=2.19pm0.03$. This represents a change of $Delta n=-0.46pm0.03$ or a 14.5$;sigma$ difference from the pre-outburst braking index of $n=2.65pm0.01$, which itself was measured over a span of 6.5 yr. So large and long-lived a change to a pulsar braking index is unprecedented and poses a significant challenge to models of pulsar spin-down.
We report the discovery and timing measurements of PSR J1208-6238, a young and highly magnetized gamma-ray pulsar, with a spin period of 440 ms. The pulsar was discovered in gamma-ray photon data from the Fermi Large Area Telescope (LAT) during a blind-search survey of unidentified LAT sources, running on the distributed volunteer computing system Einstein@Home. No radio pulsations were detected in dedicated follow-up searches with the Parkes radio telescope, with a flux density upper limit at 1369 MHz of 30 $mu$Jy. By timing this pulsars gamma-ray pulsations, we measure its braking index over five years of LAT observations to be $n = 2.598 pm 0.001 pm 0.1$, where the first uncertainty is statistical and the second estimates the bias due to timing noise. Assuming its braking index has been similar since birth, the pulsar has an estimated age of around 2,700 yr, making it the youngest pulsar to be found in a blind search of gamma-ray data and the youngest known radio-quiet gamma-ray pulsar. Despite its young age the pulsar is not associated with any known supernova remnant or pulsar wind nebula. The pulsars inferred dipolar surface magnetic field strength is $3.8 times 10^{13}$ G, almost 90% of the quantum-critical level. We investigate some potential physical causes of the braking index deviating from the simple dipole model but find that LAT data covering a longer time interval will be necessary to distinguish between these.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا