Do you want to publish a course? Click here

Large Scale Brownian Dynamics of Confined Suspensions of Rigid Particles

222   0   0.0 ( 0 )
 Added by Aleksandar Donev
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We introduce methods for large scale Brownian Dynamics (BD) simulation of many rigid particles of arbitrary shape suspended in a fluctuating fluid. Our method adds Brownian motion to the rigid multiblob method at a cost comparable to the cost of deterministic simulations. We demonstrate that we can efficiently generate deterministic and random displacements for many particles using preconditioned Krylov iterative methods, if kernel methods to efficiently compute the action of the Rotne-Prager-Yamakawa (RPY) mobility matrix and it square root are available for the given boundary conditions. We address a major challenge in large-scale BD simulations, capturing the stochastic drift term that arises because of the configuration-dependent mobility. Unlike the widely-used Fixman midpoint scheme, our methods utilize random finite differences and do not require the solution of resistance problems or the computation of the action of the inverse square root of the RPY mobility matrix. We construct two temporal schemes which are viable for large scale simulations, an Euler-Maruyama traction scheme and a Trapezoidal Slip scheme, which minimize the number of mobility solves per time step while capturing the required stochastic drift terms. We validate and compare these schemes numerically by modeling suspensions of boomerang shaped particles sedimented near a bottom wall. Using the trapezoidal scheme, we investigate the steady-state active motion in a dense suspensions of confined microrollers, whose height above the wall is set by a combination of thermal noise and active flows. We find the existence of two populations of active particles, slower ones closer to the bottom and faster ones above them, and demonstrate that our method provides quantitative accuracy even with relatively coarse resolutions of the particle geometry.



rate research

Read More

We develop efficient numerical methods for performing many-body Brownian dynamics simulations of a recently-observed fingering instability in an active suspension of colloidal rollers sedimented above a wall [M. Driscoll, B. Delmotte, M. Youssef, S. Sacanna, A. Donev and P. Chaikin, Nature Physics, 2016, doi:10.1038/nphys3970]. We present a stochastic Adams-Bashforth integrator for the equations of Brownian dynamics, which has the same cost as but is more accurate than the widely-used Euler-Maruyama scheme, and uses a random finite difference to capture the stochastic drift proportional to the divergence of the configuration-dependent mobility matrix. We generate the Brownian increments using a Krylov method, and show that for particles confined to remain in the vicinity of a no-slip wall by gravity or active flows the number of iterations is independent of the number of particles. Our numerical experiments with active rollers show that the thermal fluctuations set the characteristic height of the colloids above the wall, both in the initial condition and the subsequent evolution dominated by active flows. The characteristic height in turn controls the timescale and wavelength for the development of the fingering instability.
We derive an analytic expression for the mechanical pressure of a generic one-dimensional model of confined active Brownian particles (ABPs) that is valid for all values of Peclet number Pe and all confining scenarios. Our model reproduces the known scaling of bulk pressure with Pe^2 while in strong confinement pressure scales with Pe. Our analytic results are very well reproduced by simulations of ABPs in 2D. We use the pressure formula to calculate both the work performed by an active engine and its efficiency. In particular, efficiency is maximized for work cycles with finite period and not in the limit of infinitely slow cycles as in thermodynamic engines.
The systematic errors due to the practical implementation of the Contact Dynamics method for simulation of dense granular media are examined. It is shown that, using the usual iterative solver to simulate a chain of rigid particles, effective elasticity and sound propagation with a finite velocity occur. The characteristics of these phenomena are investigated analytically and numerically in order to assess the limits of applicability of this simulation method and to compare it with soft particle molecular dynamics.
109 - Martin Hecht , Jens Harting 2008
We simulate cluster formation of model colloidal particles interacting via DLVO (Derjaguin, Landau, Vervey, Overbeek) potentials. The interaction potentials can be related to experimental conditions, defined by the pH-value, the salt concentration and the volume fraction of solid particles suspended in water. The system shows different structural properties for different conditions, including cluster formation, a glass-like repulsive structure, or a liquid suspension. Since many simulations are needed to explore the whole parameter space, when investigating the properties of the suspension depending on the experimental conditions, we have developed a steering approach to control a running simulation and to detect interesting transitions from one region in the configuration space to another. The advantages of the steering approach and the restrictions of its applicability due to physical constraints are illustrated by several example cases.
Recent experimental studies have demonstrated that cellular motion can be directed by topographical gradients, such as those resulting from spatial variations in the features of a micropatterned substrate. This phenomenon, known as topotaxis, is especially prominent among cells persistently crawling within a spatially varying distribution of cell-sized obstacles. In this article we introduce a toy model of topotaxis based on active Brownian particles constrained to move in a lattice of obstacles, with space-dependent lattice spacing. Using numerical simulations and analytical arguments, we demonstrate that topographical gradients introduce a spatial modulation of the particles persistence, leading to directed motion toward regions of higher persistence. Our results demonstrate that persistent motion alone is sufficient to drive topotaxis and could serve as a starting point for more detailed studies on self-propelled particles and cells.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا