Do you want to publish a course? Click here

Computational Steering of Cluster Formation in Brownian Suspensions

101   0   0.0 ( 0 )
 Added by Martin Hecht
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We simulate cluster formation of model colloidal particles interacting via DLVO (Derjaguin, Landau, Vervey, Overbeek) potentials. The interaction potentials can be related to experimental conditions, defined by the pH-value, the salt concentration and the volume fraction of solid particles suspended in water. The system shows different structural properties for different conditions, including cluster formation, a glass-like repulsive structure, or a liquid suspension. Since many simulations are needed to explore the whole parameter space, when investigating the properties of the suspension depending on the experimental conditions, we have developed a steering approach to control a running simulation and to detect interesting transitions from one region in the configuration space to another. The advantages of the steering approach and the restrictions of its applicability due to physical constraints are illustrated by several example cases.



rate research

Read More

We develop efficient numerical methods for performing many-body Brownian dynamics simulations of a recently-observed fingering instability in an active suspension of colloidal rollers sedimented above a wall [M. Driscoll, B. Delmotte, M. Youssef, S. Sacanna, A. Donev and P. Chaikin, Nature Physics, 2016, doi:10.1038/nphys3970]. We present a stochastic Adams-Bashforth integrator for the equations of Brownian dynamics, which has the same cost as but is more accurate than the widely-used Euler-Maruyama scheme, and uses a random finite difference to capture the stochastic drift proportional to the divergence of the configuration-dependent mobility matrix. We generate the Brownian increments using a Krylov method, and show that for particles confined to remain in the vicinity of a no-slip wall by gravity or active flows the number of iterations is independent of the number of particles. Our numerical experiments with active rollers show that the thermal fluctuations set the characteristic height of the colloids above the wall, both in the initial condition and the subsequent evolution dominated by active flows. The characteristic height in turn controls the timescale and wavelength for the development of the fingering instability.
Dynamic particle-scale numerical simulations are used to show that the shear thickening observed in dense colloidal, or Brownian, suspensions is of a similar nature to that observed in non-colloidal suspensions, i.e., a stress-induced transition from a flow of lubricated near-contacting particles to a flow of a frictionally contacting network of particles. Abrupt (or discontinuous) shear thickening is found to be a geometric rather than hydrodynamic phenomenon; it stems from the strong sensitivity of the jamming volume fraction to the nature of contact forces between suspended particles. The thickening obtained in a colloidal suspension of purely hard frictional spheres is qualitatively similar to experimental observations. However, the agreement cannot be made quantitative with only hydrodynamics, frictional contacts and Brownian forces. Therefore the role of a short-range repulsive potential mimicking the stabilization of actual suspensions on the thickening is studied. The effects of Brownian and repulsive forces on the onset stress can be combined in an additive manner. The simulations including Brownian and stabilizing forces show excellent agreement with experimental data for the viscosity $eta$ and the second normal stress difference $N_2$.
Particles suspended in a Newtonian fluid raise the viscosity and also generally give rise to a shear-rate dependent rheology. In particular, pronounced shear thickening may be observed at large solid volume fractions. In a recent article (R. Seto, R. Mari, J. F. Morris, and M. M. Denn., Phys. Rev. Lett., 111:218301, 2013) we have considered the minimum set of components to reproduce the experimentally observed shear thickening behavior, including Discontinuous Shear Thickening (DST). We have found frictional contact forces to be essential, and were able to reproduce the experimental behavior by a simulation including this physical ingredient along with viscous lubrication. In the present article, we thoroughly investigate the effect of friction and express it in the framework of the jamming transition. The viscosity divergence at the jamming transition has been a well known phenomenon in suspension rheology, as reflected in many empirical laws for the viscosity. Friction can affect this divergence, and in particular the jamming packing fraction is reduced if particles are frictional. Within the physical description proposed here, shear thickening is a direct consequence of this effect: as the shear rate increases, friction is increasingly incorporated as more contacts form, leading to a transition from a mostly frictionless to a mostly frictional rheology. This result is significant because it shifts the emphasis from lubrication hydrodynamics and detailed microscopic interactions to geometry and steric constraints close to the jamming transition.
146 - Matthieu Wyart , Mike Cates 2013
A consensus is emerging that discontinuous shear thickening (DST) in dense suspensions marks a transition from a flow state where particles remain well separated by lubrication layers, to one dominated by frictional contacts. We show here that reasonable assumptions about contact proliferation predict two distinct types of DST in the absence of inertia. The first occurs at densities above the jamming point of frictional particles; here the thickened state is completely jammed and (unless particles deform) cannot flow without inhomogeneity or fracture. The second regime shows strain- rate hysteresis and arises at somewhat lower densities where the thickened phase flows smoothly. DST is predicted to arise when finite-range repulsions defer contact formation until a characteristic stress level is exceeded.
We introduce methods for large scale Brownian Dynamics (BD) simulation of many rigid particles of arbitrary shape suspended in a fluctuating fluid. Our method adds Brownian motion to the rigid multiblob method at a cost comparable to the cost of deterministic simulations. We demonstrate that we can efficiently generate deterministic and random displacements for many particles using preconditioned Krylov iterative methods, if kernel methods to efficiently compute the action of the Rotne-Prager-Yamakawa (RPY) mobility matrix and it square root are available for the given boundary conditions. We address a major challenge in large-scale BD simulations, capturing the stochastic drift term that arises because of the configuration-dependent mobility. Unlike the widely-used Fixman midpoint scheme, our methods utilize random finite differences and do not require the solution of resistance problems or the computation of the action of the inverse square root of the RPY mobility matrix. We construct two temporal schemes which are viable for large scale simulations, an Euler-Maruyama traction scheme and a Trapezoidal Slip scheme, which minimize the number of mobility solves per time step while capturing the required stochastic drift terms. We validate and compare these schemes numerically by modeling suspensions of boomerang shaped particles sedimented near a bottom wall. Using the trapezoidal scheme, we investigate the steady-state active motion in a dense suspensions of confined microrollers, whose height above the wall is set by a combination of thermal noise and active flows. We find the existence of two populations of active particles, slower ones closer to the bottom and faster ones above them, and demonstrate that our method provides quantitative accuracy even with relatively coarse resolutions of the particle geometry.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا