Do you want to publish a course? Click here

The MeerKAT International GHz Tiered Extragalactic Exploration (MIGHTEE) Survey

97   0   0.0 ( 0 )
 Added by Matt Jarvis
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The MIGHTEE large survey project will survey four of the most well-studied extragalactic deep fields, totalling 20 square degrees to $mu$Jy sensitivity at Giga-Hertz frequencies, as well as an ultra-deep image of a single ~1 square degree MeerKAT pointing. The observations will provide radio continuum, spectral line and polarisation information. As such, MIGHTEE, along with the excellent multi-wavelength data already available in these deep fields, will allow a range of science to be achieved. Specifically, MIGHTEE is designed to significantly enhance our understanding of, (i) the evolution of AGN and star-formation activity over cosmic time, as a function of stellar mass and environment, free of dust obscuration; (ii) the evolution of neutral hydrogen in the Universe and how this neutral gas eventually turns into stars after moving through the molecular phase, and how efficiently this can fuel AGN activity; (iii) the properties of cosmic magnetic fields and how they evolve in clusters, filaments and galaxies. MIGHTEE will reach similar depth to the planned SKA all-sky survey, and thus will provide a pilot to the cosmology experiments that will be carried out by the SKA over a much larger survey volume.



rate research

Read More

We present the HI emission project within the MIGHTEE survey, currently being carried out with the newly commissioned MeerKAT radio telescope. This is one of the first deep, blind, medium-wide interferometric surveys for neutral hydrogen (HI) ever undertaken, extending our knowledge of HI emission to z=0.6. The science goals of this medium-deep, medium-wide survey are extensive, including the evolution of the neutral gas content of galaxies over the past 5 billion years. Simulations predict nearly 3000 galaxies over 0<z<0.4 will be detected directly in HI, with statistical detections extending to z=0.6. The survey allows us to explore HI as a function of galaxy environment, with massive groups and galaxy clusters within the survey volume. Additionally, the area is large enough to contain as many as 50 local galaxies with HI mass $<10^8$ Msun, which allows us to study the low-mass galaxy population. The 20 deg$^2$ main survey area is centred on fields with exceptional multi-wavelength ancillary data, with photometry ranging from optical through far-infrared wavelengths, supplemented with multiple spectroscopic campaigns. We describe here the survey design and the key science goals. We also show first results from the Early Science observations, including kinematic modelling of individual sources, along with the redshift, HI, and stellar mass ranges of the sample to date.
The Herschel Multi-tiered Extragalactic Survey, HerMES, is a legacy program designed to map a set of nested fields totalling ~380 deg^2. Fields range in size from 0.01 to ~20 deg^2, using Herschel-SPIRE (at 250, 350 and 500 mu m), and Herschel-PACS (at 100 and 160 mu m), with an additional wider component of 270 deg^2 with SPIRE alone. These bands cover the peak of the redshifted thermal spectral energy distribution from interstellar dust and thus capture the re-processed optical and ultra-violet radiation from star formation that has been absorbed by dust, and are critical for forming a complete multi-wavelength understanding of galaxy formation and evolution. The survey will detect of order 100,000 galaxies at 5sigma in some of the best studied fields in the sky. Additionally, HerMES is closely coordinated with the PACS Evolutionary Probe survey. Making maximum use of the full spectrum of ancillary data, from radio to X-ray wavelengths, it is designed to: facilitate redshift determination; rapidly identify unusual objects; and understand the relationships between thermal emission from dust and other processes. Scientific questions HerMES will be used to answer include: the total infrared emission of galaxies; the evolution of the luminosity function; the clustering properties of dusty galaxies; and the properties of populations of galaxies which lie below the confusion limit through lensing and statistical techniques. This paper defines the survey observations and data products, outlines the primary scientific goals of the HerMES team, and reviews some of the early results.
We investigate the potential of submm-mm and submm-mm-radio photometric redshifts using a sample of mm-selected sources as seen at 250, 350 and 500 {mu}m by the SPIRE instrument on Herschel. From a sample of 63 previously identified mm-sources with reliable radio identifications in the GOODS-N and Lockman Hole North fields 46 (73 per cent) are found to have detections in at least one SPIRE band. We explore the observed submm/mm colour evolution with redshift, finding that the colours of mm-sources are adequately described by a modified blackbody with constant optical depth {tau} = ({ u}/{ u}0)^{beta} where {beta} = +1.8 and { u}0 = c/100 {mu}m. We find a tight correlation between dust temperature and IR luminosity. Using a single model of the dust temperature and IR luminosity relation we derive photometric redshift estimates for the 46 SPIRE detected mm-sources. Testing against the 22 sources with known spectroscopic, or good quality optical/near-IR photometric, redshifts we find submm/mm photometric redshifts offer a redshift accuracy of |z|/(1+z) = 0.16 (< |z| >= 0.51). Including constraints from the radio-far IR correlation the accuracy is improved to |z|/(1 + z) = 0.15 (< |z| >= 0.45). We estimate the redshift distribution of mm-selected sources finding a significant excess at z > 3 when compared to ~ 850 {mu}m selected samples.
284 - T. Mauch 2019
We present the confusion-limited 1.28 GHz MeerKAT DEEP2 image covering one $approx 68$ FWHM primary beam area with $7.6$ FWHM resolution and $0.55 pm 0.01$ $mu$Jy/beam rms noise. Its J2000 center position $alpha=04^h 13^m 26.4^s$, $delta=-80^circ 00 00$ was selected to minimize artifacts caused by bright sources. We introduce the new 64-element MeerKAT array and describe commissioning observations to measure the primary beam attenuation pattern, estimate telescope pointing errors, and pinpoint $(u,v)$ coordinate errors caused by offsets in frequency or time. We constructed a 1.4 GHz differential source count by combining a power-law count fit to the DEEP2 confusion $P(D)$ distribution from $0.25$ to $10$ $mu$Jy with counts of individual DEEP2 sources between $10$ $mu$Jy and $2.5$ mJy. Most sources fainter than $S sim 100$ $mu$Jy are distant star-forming galaxies obeying the FIR/radio correlation, and sources stronger than $0.25$ $mu$Jy account for $sim93%$ of the radio background produced by star-forming galaxies. For the first time, the DEEP2 source count has reached the depth needed to reveal the majority of the star formation history of the universe. A pure luminosity evolution of the 1.4 GHz local luminosity function consistent with the Madau & Dickinson (2014) model for the evolution of star-forming galaxies based on UV and infrared data underpredicts our 1.4 GHz source count in the range $-5 lesssim log[S(mathrm{Jy})] lesssim -4$.
A VLA Sky Survey of the extragalactic sky at S band (2-4 GHz) with polarization information can uniquely probe the magneto-ionic medium in a wide range of astrophysical environments over cosmic time. For a shallow all-sky survey, we expect to detect over 4 million sources in total intensity $>$ 0.45 mJy beam$^{-1}$ and over 2.2$times$10$^5$ sources in polarized intensity. With these new observations, we expect to discover new classes of polarized radio sources in very turbulent astrophysical environments and those with extreme values of Faraday depth. Moreover, by determining reliable Faraday depths and by modeling depolarization effects, we can derive properties of the magneto-ionic medium associated with AGNs, absorption line systems and galaxies, addressing the following unresolved questions: (1) What is the covering fraction, the degree of turbulence and the origin of absorption line systems? (2) What is the thermal content in AGNs and radio galaxies? (3) How do AGNs and galaxies evolve over cosmic time? (4) What causes the increase in percentage polarization with decreasing flux densities at the low flux density end of the polarized source count? (5) What is the growth rate of large-scale magnetic fields in galaxies?
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا