Do you want to publish a course? Click here

Off-axis prompt X-ray transients from the cocoon of short gamma-ray bursts

195   0   0.0 ( 0 )
 Added by Davide Lazzati
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the results of numerical simulations of the prompt emission of short-duration gamma-ray bursts. We consider emission from the relativistic jet, the mildly relativistic cocoon, and the non-relativistic shocked ambient material. We find that the cocoon material is confined between off-axis angles 15<theta<45 degrees and gives origin to X-ray transients with a duration of a few to ~10 seconds, delayed by a few seconds from the time of the merger. We also discuss the distance at which such transients can be detected, finding that it depends sensitively on the assumptions that are made about the radiation spectrum. Purely thermal cocoon transients are detectable only out to a few Mpc, Comptonized transients can instead be detected by the FERMI GBM out to several tens of Mpc.



rate research

Read More

If gamma-ray burst prompt emission originates at a typical radius, and if material producing the emission moves at relativistic speed, then the variability of the resulting light curve depends on the viewing angle. This is due to the fact that the pulse evolution time scale is Doppler contracted, while the pulse separation is not. For off-axis viewing angles $theta_{rm view} gtrsim theta_{rm jet} + Gamma^{-1}$, the pulse broadening significantly smears out the light curve variability. This is largely independent of geometry and emission processes. To explore a specific case, we set up a simple model of a single pulse under the assumption that the pulse rise and decay are dominated by the shell curvature effect. We show that such a pulse observed off-axis is (i) broader, (ii) softer and (iii) displays a different hardness-intensity correlation with respect to the same pulse seen on-axis. For each of these effects, we provide an intuitive physical explanation. We then show how a synthetic light curve made by a superposition of pulses changes with increasing viewing angle. We find that a highly variable light curve, (as seen on-axis) becomes smooth and apparently single-pulsed (when seen off-axis) because of pulse overlap. To test the relevance of this fact, we estimate the fraction of off-axis gamma-ray bursts detectable by textit{Swift} as a function of redshift, finding that a sizable fraction (between 10% and 80%) of nearby ($z<0.1$) bursts are observed with $theta_{rm view} gtrsim theta_{rm jet} + Gamma^{-1}$. Based on these results, we argue that low luminosity gamma-ray bursts are consistent with being ordinary bursts seen off-axis.
162 - Davide Lazzati 2016
We present calculations of the wide angle emission of short-duration gamma-ray bursts from compact binary merger progenitors. Such events are expected to be localized by their gravitational wave emission, fairly irrespective of the orientation of the angular momentum vector of the system, along which the gamma-ray burst outflow is expected to propagate. We show that both the prompt and afterglow emission are dim and challenging to detect for observers lying outside of the cone within which the relativistic outflow is propagating. If the jet initially propagates through a baryon contaminated region surrounding the merger site, however, a hot cocoon forms around it. The cocoon subsequently expands quasi-isotropically producing its own prompt emission and external shock powered afterglow. We show that the cocoon prompt emission is detectable by Swift BAT and Fermi GBM, We also show that the cocoon afterglow peaks a few hours to a few days after the burst and is detectable for up to a few weeks at all wavelengths. The timing and brightness of the transient are however uncertain due to their dependence on unknown quantities such as the density of the ambient medium surrounding the merger site, the cocoon energy, and the cocoon Lorentz factor. For a significant fraction of the gravitationally-detected neutron-star-binary mergers, the cocoon afterglow could possibly be the only identifiable electromagnetic counterpart, at least at radio and X-ray frequencies.
There exists an inevitable scatter in intrinsic luminosity of Gamma Ray Bursts(GRBs). If there is relativistic beaming in the source, viewing angle variation necessarily introduces variation in the intrinsic luminosity function(ILF). Scatter in the ILF can cause a selection bias where distant sources that are detected have a larger median luminosity than those detected close by. Median luminosity, as we know, divides any given population into equal halves. When the functional form of a distribution is unknown, it can be a more robust diagnostic than any that use trial functional forms. In this work we employ a statistical test based on median luminosity and apply it to test a class of models for GRBs. We assume that the GRB jet has a finite opening angle and that the orientation of the GRB jet is random relative to the observer. We parameterize the jet with constant Lorentz factor $Gamma$ and opening angle $theta_0$. We calculate $L_{median}$ as a function of redshift with an average of 17 grbs in each redshift bin($dz=0.01$) empirically, theoretically and use Fermi GBM data, noting that SWIFT data is problematic as it is biased, specially at high redshifts. We find that $L_{median}$ is close to $L_{max}$ for sufficiently extended GRB jet and does not fit the data. We find an acceptable fit with the data when $Gamma$ is between $100$ and $200$, $theta_0leq 0.1$, provided that the jet material along the line of sight to the on axis observer is optically thick, such that the shielded maximum luminosity is well below the bare $L_{max}$. If we associate an on-axis observer with a classically projected monotonically decreasing afterglow, we find that their ILF is similar to those of off-jet observer which we associate with flat phase afterglows.
Different forms of long gamma-ray bursts (GRBs) Luminosity Functions are considered on the basis of an explicit physical model. The inferred flux distributions are compared with the observed ones from two samples of GRBs, Swift and Fermi GBM. The best fit parameters of the Luminosity functions are found and the physical interpretations are discussed. The results are consistent with the observation of a comparable number of flat phase afterglows and monotonic decreasing ones.
The X-ray emission of gamma-ray bursts (GRBs) is often characterized by an initial steep decay, followed by a nearly constant emission phase (so called plateau) which can extend up to thousands of seconds. While the steep decay is usually interpreted as the tail of the prompt gamma-ray flash, the long-lasting plateau is commonly associated to the emission from the external shock sustained by energy injection from a long lasting central engine. A recent study proposed an alternative interpretation, ascribing both the steep decay and the plateau to high-latitude emission (HLE) from a structured jet whose energy and bulk Lorentz factor depend on the angular distance from the jet symmetry axis. In this work we expand over this idea and explore more realistic conditions: (a) the finite duration of the prompt emission, (b) the angular dependence of the optical depth and (c) the lightcurve dependence on the observer viewing angle. We find that, when viewed highly off-axis, the structured jet HLE lightcurve is smoothly decaying with no clear distinction between the steep and flat phase, as opposed to the on-axis case. For a realistic choice of physical parameters, the effects of a latitude-dependent Thomson opacity and finite duration of the emission have a marginal effect on the overall lightcurve evolution. We discuss the possible HLE of GW170817, showing that the emission would have faded away long before the first Swift-XRT observations. Finally, we discuss the prospects for the detection of HLE from off-axis GRBs by present and future wide-field X-ray telescopes and X-ray surveys, such as eROSITA and the mission concept THESEUS.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا