Do you want to publish a course? Click here

Polarization properties of turbulent synchrotron bubbles: an approach based on Chandrasekhar-Kendall functions

107   0   0.0 ( 0 )
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Synchrotron emitting bubbles arise when the outflow from a compact relativistic engine, either a Black Hole or a Neutron Star, impacts on the environment. The emission properties of synchrotron radiation are widely used to infer the dynamical properties of these bubbles, and from them the injection conditions of the engine. Radio polarization offers an important tool to investigate the level and spectrum of turbulence, the magnetic field configuration, and possibly the degree of mixing. Here we introduce a formalism based on Chandrasekhar-Kendall functions that allows us to properly take into account the geometry of the bubble, going beyond standard analysis based on periodic cartesian domains. We investigate how different turbulent spectra, magnetic helicity and particle distribution function, impact on global properties that are easily accessible to observations, even at low resolution, and we provide fitting formulae to relate observed quantities to the underlying magnetic field structure.



rate research

Read More

283 - Axel Brandenburg 2011
Some of the contributions of Chandrasekhar to the field of magnetohydrodynamics are highlighted. Particular emphasis is placed on the Chandrasekhar-Kendall functions that allow a decomposition of a vector field into right- and left-handed contributions. Magnetic energy spectra of both contributions are shown for a new set of helically forced simulations at resolutions higher than what has been available so far. For a forcing function with positive helicity, these simulations show a forward cascade of the right-handed contributions to the magnetic field and nonlocal inverse transfer for the left-handed contributions. The speed of inverse transfer is shown to decrease with increasing value of the magnetic Reynolds number.
In 2015 July 29 - September 1 the satellite XMM-Newton pointed at the BL Lac object PG 1553+133 six times, collecting data for 218 hours. During one of these epochs, simultaneous observations by the Swift satellite were requested to compare the results of the X-ray and optical-UV instruments. Optical, near-infrared and radio monitoring was carried out by the Whole Earth Blazar Telescope (WEBT) collaboration for the whole observing season. We here present the results of the analysis of all these data, together with an investigation of the source photometric and polarimetric behaviour over the last three years. The 2015 EPIC spectra show slight curvature and the corresponding light curves display fast X-ray variability with a time scale of the order of 1 hour. In contrast to previous results, during the brightest X-ray states detected in 2015 the simple log-parabolic model that best-fits the XMM-Newton data also reproduces reasonably well the whole synchrotron bump, suggesting a peak in the near-UV band. We found evidence of a wide rotation of the polarization angle in 2014, when the polarization degree was variable, but the flux remained almost constant. This is difficult to interpret with deterministic jet emission models, while it can be easily reproduced by assuming some turbulence of the magnetic field.
A possible way to study the reionization of cosmic hydrogen is by observing the large ionized regions (bubbles) around bright individual sources, e.g., quasars, using the redshifted 21 cm signal. It has already been shown that matched filter-based methods are not only able to detect the weak 21 cm signal from these bubbles but also aid in constraining their properties. In this work, we extend the previous studies to develop a rigorous Bayesian framework to explore the possibility of constraining the parameters that characterize the bubbles. To check the accuracy with which we can recover the bubble parameters, we apply our method on mock observations appropriate for the upcoming SKA1-low. For a region of size $gtrsim 50$ cMpc around a typical quasar at redshift 7, we find that $approx 20$ h of integration with SKA1-low will be able to constrain the size and location of the bubbles, as well as the difference in the neutral hydrogen fraction inside and outside the bubble, with $lesssim 10%$ precision. The recovery of the parameters are more precise and the SNR of the detected signal is higher when the bubble sizes are larger and their shapes are close to spherical. Our method can be useful in identifying regions in the observed field which contain large ionized regions and hence are interesting for following up with deeper integration times.
On 14 August 2019, the LIGO and Virgo Collaborations alerted the astronomical community of a high significance detection of gravitational waves and classified the source as a neutron star - black hole (NSBH) merger, the first event of its kind. In search of an optical counterpart, the Dark Energy Survey (DES) Gravitational Wave Search and Discovery Team performed the most thorough and accurate analysis to date, targeting the entire 90 percent confidence level localization area with Blanco/DECam 0, 1, 2, 3, 6, and 16 nights after the merger was detected. Objects with varying brightness were detected by the DES Search and Discovery Pipeline and we systematically reduced the list of candidate counterparts through catalog matching, light curve properties, host-galaxy photometric redshifts, SOAR spectroscopic follow-up observations, and machine-learning-based photometric classification. All candidates were rejected as counterparts to the merger. To quantify the sensitivity of our search, we applied our selection criteria to simulations of supernovae and kilonovae as they would appear in the DECam observations. Since there are no explicit light curve models for NSBH mergers, we characterize our sensitivity with binary NS models that are expected to have similar optical signatures as NSBH mergers. We find that if a kilonova occurred during this merger, configurations where the ejected matter is greater than 0.07 solar masses, has lanthanide abundance less than $10^{-8.56}$, and has a velocity between $0.18c$ and $0.21c$ are disfavored at the $2sigma$ level. Furthermore, we estimate that our background reduction methods are capable of associating gravitational wave signals with a detected electromagnetic counterpart at the $4sigma$ level in $95%$ of future follow-up observations.
64 - Jiro Shimoda , Kenji Toma 2020
Multi-wave band synchrotron linear polarization of gamma-ray burst (GRB) afterglows is studied under the assumption of an anisotropic turbulent magnetic field with a coherence length of the plasma skin-depth scale in the downstream of forward shocks. We find that for typical GRBs, in comparison to the optical polarization, the degree of radio polarization shows a similar temporal evolution but a significantly smaller peak value. This results from differences in observed intensity image shapes between the radio and optical bands. We also show that the degree of the polarization spectrum undergoes a gradual variation from the low- to the high-polarization regime above the intensity of the spectral peak frequency, and that the difference in polarization angles in the two regimes is zero or 90 degrees. Thus, simultaneous multi-wave band polarimetric observations of GRB afterglows would be a new determinative test of the plasma-scale magnetic field model. We also discuss theoretical implications from the recent detection of radio linear polarization in GRB 171205A with ALMA and other models of magnetic field configuration.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا