Do you want to publish a course? Click here

Analysing Mutual Exclusion using Process Algebra with Signals

163   0   0.0 ( 0 )
 Added by EPTCS
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

In contrast to common belief, the Calculus of Communicating Systems (CCS) and similar process algebras lack the expressive power to accurately capture mutual exclusion protocols without enriching the language with fairness assumptions. Adding a fairness assumption to implement a mutual exclusion protocol seems counter-intuitive. We employ a signalling operator, which can be combined with CCS, or other process calculi, and show that this minimal extension is expressive enough to model mutual exclusion: we confirm the correctness of Petersons mutual exclusion algorithm for two processes, as well as Lamports bakery algorithm, under reasonable assumptions on the underlying memory model. The correctness of Petersons algorithm for more than two processes requires stronger, less realistic assumptions on the underlying memory model.



rate research

Read More

141 - C. A. Middelburg 2020
In the case of multi-threading as found in contemporary programming languages, parallel processes are interleaved according to what is known as a process-scheduling policy in the field of operating systems. In a previous paper, we extend ACP with this form of interleaving. In the current paper, we do so with the variant of ACP known as ACP$_epsilon$. The choice of ACP$_epsilon$ stems from the need to cover more process-scheduling policies. We show that a process-scheduling policy supporting mutual exclusion of critical subprocesses is now covered.
373 - Rob van Glabbeek 2021
I show that in a standard process algebra extended with time-outs one can correctly model mutual exclusion in such a way that starvation-freedom holds without assuming fairness or justness, even when one makes the problem more challenging by assuming memory accesses to be atomic. This can be achieved only when dropping the requirement of speed independence.
In a previous paper, an ACP-style process algebra was proposed in which propositions are used as the visible part of the state of processes and as state conditions under which processes may proceed. This process algebra, called ACPps, is built on classical propositional logic. In this paper, we present a version of ACPps built on a paraconsistent propositional logic which is essentially the same as CLuNs. There are many systems that would have to deal with self-contradictory states if no special measures were taken. For a number of these systems, it is conceivable that accepting self-contradictory states and dealing with them in a way based on a paraconsistent logic is an alternative to taking special measures. The presented version of ACPps can be suited for the description and analysis of systems that deal with self-contradictory states in a way based on the above-mentioned paraconsistent logic.
In process algebras such as ACP (Algebra of Communicating Processes), parallel processes are considered to be interleaved in an arbitrary way. In the case of multi-threading as found in contemporary programming languages, parallel processes are actually interleaved according to some interleaving strategy. An interleaving strategy is what is called a process-scheduling policy in the field of operating systems. In many systems, for instance hardware/software systems, we have to do with both parallel processes that may best be considered to be interleaved in an arbitrary way and parallel processes that may best be considered to be interleaved according to some interleaving strategy. Therefore, we extend ACP in this paper with the latter form of interleaving. The established properties of the extension concerned include an elimination property, a conservative extension property, and a unique expansion property.
118 - C.A. Middelburg 2021
This paper introduces an imperative process algebra based on ACP (Algebra of Communicating Processes). Like other imperative process algebras, this process algebra deals with processes of the kind that arises from the execution of imperative programs. It distinguishes itself from already existing imperative process algebras among other things by supporting abstraction from actions that are considered not to be visible. The support of abstraction opens interesting application possibilities of the process algebra. This paper goes briefly into the possibility of information-flow security analysis of the kind that is concerned with the leakage of confidential data. For the presented axiomatization, soundness and semi-completeness results with respect to a notion of branching bisimulation equivalence are established.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا