Do you want to publish a course? Click here

The GALAH survey: Chemical Tagging of Star Clusters and New Members in the Pleiades

71   0   0.0 ( 0 )
 Added by Janez Kos
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The technique of chemical tagging uses the elemental abundances of stellar atmospheres to `reconstruct chemically homogeneous star clusters that have long since dispersed. The GALAH spectroscopic survey --which aims to observe one million stars using the Anglo-Australian Telescope -- allows us to measure up to 30 elements or dimensions in the stellar chemical abundance space, many of which are not independent. How to find clustering reliably in a noisy high-dimensional space is a difficult problem that remains largely unsolved. Here we explore t-distributed stochastic neighbour embedding (t-SNE) -- which identifies an optimal mapping of a high-dimensional space into fewer dimensions -- whilst conserving the original clustering information. Typically, the projection is made to a 2D space to aid recognition of clusters by eye. We show that this method is a reliable tool for chemical tagging because it can: (i) resolve clustering in chemical space alone, (ii) recover known open and globular clusters with high efficiency and low contamination, and (iii) relate field stars to known clusters. t-SNE also provides a useful visualization of a high-dimensional space. We demonstrate the method on a dataset of 13 abundances measured in the spectra of 187,000 stars by the GALAH survey. We recover 7 of the 9 observed clusters (6 globular and 3 open clusters) in chemical space with minimal contamination from field stars and low numbers of outliers. With chemical tagging, we also identify two Pleiades supercluster members (which we confirm kinematically), one as far as 6$^circ$ -- one tidal radius away from the cluster centre.



rate research

Read More

We present a study using the second data release of the GALAH survey of stellar parameters and elemental abundances of 15 pairs of stars identified by Oh et al 2017. They identified these pairs as potentially co-moving pairs using proper motions and parallaxes from Gaia DR1. We find that 11 very wide (>1.7 pc) pairs of stars do in fact have similar Galactic orbits, while a further four claimed co-moving pairs are not truly co-orbiting. Eight of the 11 co-orbiting pairs have reliable stellar parameters and abundances, and we find that three of those are quite similar in their abundance patterns, while five have significant [Fe/H] differences. For the latter, this indicates that they could be co-orbiting because of the general dynamical coldness of the thin disc, or perhaps resonances induced by the Galaxy, rather than a shared formation site. Stars such as these, wide binaries, debris of past star formation episodes, and coincidental co-orbiters, are crucial for exploring the limits of chemical tagging in the Milky Way.
We present optical photometry (i- and Z-band) and low-resolution spectroscopy (640-1015 nm) of very faint candidate members (J = 20.2-21.2 mag) of the Pleiades star cluster (120 Myr). The main goal is to address their cluster membership via photometric, astrometric, and spectroscopic studies, and to determine the properties of the least massive population of the cluster through the comparison of the data with younger and older spectral counterparts and state-of-the art model atmospheres. We confirm three bona-fide Pleiades members that have extremely red optical and infrared colors, effective temperatures of ~1150 K and ~1350 K, and masses in the interval 11-20 Mjup, and one additional likely member that shares the same motion as the cluster but does not appear to be as red as the other members with similar brightness. This latter object requires further near-infrared spectroscopy to fully address its membership in the Pleiades. The optical spectra of two bona-fide members were classified as L6-L7 and show features of KI, a tentative detection of CsI, hydrides and water vapor with an intensity similar to high-gravity dwarfs of related classification despite their young age. The properties of the Pleiades L6-L7 members clearly indicate that very red colors of L dwarfs are not a direct evidence of ages younger than ~100 Myr. We also report on the determination of the bolometric corrections for the coolest Pleiades members. These data can be used to interpret the observations of the atmospheres of exoplanets orbiting stars.
Since the advent of $Gaia$ astrometry, it is possible to identify massive accreted systems within the Galaxy through their unique dynamical signatures. One such system, $Gaia$-Sausage-Enceladus (GSE), appears to be an early building block given its virial mass $> 10^{10},mathrm{M_odot}$ at infall ($zsim1-3$). In order to separate the progenitor population from the background stars, we investigate its chemical properties with up to 30 element abundances from the GALAH+ Survey Data Release 3 (DR3). To inform our choice of elements for purely chemically selecting accreted stars, we analyse 4164 stars with low-$alpha$ abundances and halo kinematics. These are most different to the Milky Way stars for abundances of Mg, Si, Na, Al, Mn, Fe, Ni, and Cu. Based on the significance of abundance differences and detection rates, we apply Gaussian mixture models to various element abundance combinations. We find the most populated and least contaminated component, which we confirm to represent GSE, contains 1049 stars selected via [Na/Fe] vs. [Mg/Mn] in GALAH+ DR3. We provide tables of our selections and report the chrono-chemodynamical properties (age, chemistry, and dynamics). Through a previously reported clean dynamical selection of GSE stars, including $30 < sqrt{J_R~/~mathrm{kpc,km,s^{-1}}} < 55$, we can characterise an unprecedented 24 abundances of this structure with GALAH+ DR3. Our chemical selection allows us to prevent circular reasoning and characterise the dynamical properties of the GSE, for example mean $sqrt{J_R~/~mathrm{kpc,km,s^{-1}}} = 26_{-14}^{+9}$. We find only $(29pm1)%$ of the GSE stars within the clean dynamical selection region. We thus discuss chemodynamic selections (such as eccentricity and upper limits on [Na/Fe]).
Due to its proximity, the Orion star forming region is often used as a proxy to study processes related to star formation and to observe young stars in the environment they were born in. With the release of Gaia DR2, the distance measurements to the Orion complex are now good enough that the three dimensional structure of the complex can be explored. Here we test the hypothesis that, due to non-trivial structure and dynamics, and age spread in the Orion complex, the chemical enrichment of youngest stars by early core-collapse supernovae can be observed. We obtained spectra of 794 stars of the Orion complex with the HERMES spectrograph at the Anglo Australian telescope as a part of the GALAH and GALAH-related surveys. We use the spectra of $sim300$ stars to derive precise atmospheric parameters and chemical abundances of 25 elements for 15 stellar clusters in the Orion complex. We demonstrate that the Orion complex is chemically homogeneous and that there was no self-pollution of young clusters by core-collapse supernovae from older clusters; with a precision of 0.02 dex in relative alpha-elements abundance and 0.06 dex in oxygen abundance we would have been able to detect pollution from a single supernova, given a fortunate location of the SN and favourable conditions for ISM mixing. We estimate that the supernova rate in the Orion complex was very low, possibly producing no supernova by the time the youngest stars of the observed population formed (from around 21 to 8 Myr ago).
Previous studies have found that the elemental abundances of a star correlate directly with its age and metallicity. Using this knowledge, we derive ages for a sample of 250,000 stars taken from GALAH DR3 using only their overall metallicity and chemical abundances. Stellar ages are estimated via the machine learning algorithm $XGBoost$, using main sequence turnoff stars with precise ages as our input training set. We find that the stellar ages for the bulk of the GALAH DR3 sample are accurate to 1-2 Gyr using this method. With these ages, we replicate many recent results on the age-kinematic trends of the nearby disk, including the age-velocity dispersion relationship of the solar neighborhood and the larger global velocity dispersion relations of the disk found using $Gaia$ and GALAH. The fact that chemical abundances alone can be used to determine a reliable age for a star have profound implications for the future study of the Galaxy as well as upcoming spectroscopic surveys. These results show that the chemical abundance variation at a given birth radius is quite small, and imply that strong chemical tagging of stars directly to birth clusters may prove difficult with our current elemental abundance precision. Our results highlight the need of spectroscopic surveys to deliver precision abundances for as many nucleosynthetic production sites as possible in order to estimate reliable ages for stars directly from their chemical abundances. Applying the methods outlined in this paper opens a new door into studies of the kinematic structure and evolution of the disk, as ages may potentially be estimated for a large fraction of stars in existing spectroscopic surveys. This would yield a sample of millions of stars with reliable age determinations, and allow precise constraints to be put on various kinematic processes in the disk, such as the efficiency and timescales of radial migration.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا