Do you want to publish a course? Click here

Pre-heating of the intergalactic medium by gravitational collapse and ultraviolet background

442   0   0.0 ( 0 )
 Added by Weishan Zhu
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The preheating of intergalactic medium(IGM) by structure collapsing and ultraviolet background(UVB) are investigated in cosmological hydrodynamical simulations. When gravitational collapsing is the sole heating mechanism, we find that (1) $60%, 45%$ of the IGM are heated up to $S>8, 17$ kev cm$^2$ respectively at $z=0$, but the fractions drop rapidly to a few percents at $z=2$, (2) the entropy of the circum-halo gas $S_{rm{cir}}$ is higher than the virial entropy for more than $75 %$ of the halos with masses $M<10^{11.5}$ $M_{odot}$ since $z=2$, but the fraction higher than the entropy, $S_{rm{pr}}$, required in preventive model of galaxies formation is only $15-20 %$ for halos with $M<10^{10.5} M_{odot}$ at $z=0$, and decreases as redshift increases, (3)assuming a metallicity of $Z leq 0.03 Z_{odot}$, the fraction of halos whose circum-halo gas having a cooling time longer than the Hubble time $t_{cool,cir}>t_{rm{H}}$ is merely $5-10 %$ at $z lesssim 0.5$, and even less at $z geq 1$ for halos with $M<10^{10.5} M_{odot}$. (4) gas in the filaments undergoes the strongest preheating. Furthermore, we show that the UVB can not enhance the fraction of IGM with $S>17$ kev cm$^2$, but can increase the fraction of low mass halos($<10^{10.5} M_{odot}$) that having $S_{rm{cir}}>S_{rm{pr}}$ to $sim 70 %$ at $z=0$, and that having $t_{rm{cool, cir}}>t_{rm{H}}$ to $15-30 %$ at $z lesssim 0.5$. Our results indicate that preheating due to gravitational collapsing and UVB are inadequate to fulfil the needs of preventative model, especially for halos with $10^{10.5}<M<10^{11.5} M_{odot}$. Nevertheless, these two mechanisms might cause large scale galactic conformity.



rate research

Read More

During reionization, the intergalactic medium is heated impulsively by supersonic ionization fronts (I-fronts). The peak gas temperatures behind the I-fronts, $T_mathrm{reion}$, are a key uncertainty in models of the thermal history after reionization. Here we use high-resolution radiative transfer simulations to study the parameter space of $T_mathrm{reion}$. We show that $T_mathrm{reion}$ is only mildly sensitive to the spectrum of incident radiation over most of the parameter space, with temperatures set primarily by I-front speeds. We also explore what current models of reionization predict for $T_mathrm{reion}$ by measuring I-front speeds in cosmological radiative transfer simulations. We find that the post-I-front temperatures evolve toward hotter values as reionization progresses. Temperatures of $T_mathrm{reion} = 17,000-22,000$ K are typical during the first half of reionization, but $T_mathrm{reion} = 25,000 - 30,000$ K may be achieved near the end of this process if I-front speeds reach $sim10^4$ km/s as found in our simulations. Shorter reionization epochs lead to hotter $T_mathrm{reion}$. We discuss implications for $z>5$ Ly$alpha$ forest observations, which potentially include sight lines through hot, recently reionized patches of the Universe. Interpolation tables from our parameter space study are made publicly available, along with a simple fit for the dependence of $T_mathrm{reion}$ on the I-front speed.
The intergalactic medium is expected to be at its coldest point before the formation of the first stars in the universe. Motivated by recent results from the EDGES experiment, we revisit the standard calculation of the kinetic temperature of the neutral gas through this period. When the first ultraviolet (UV) sources turn on, photons redshift into the Lyman lines of neutral hydrogen and repeatedly scatter within the Lyman-$alpha$ line. They heat the gas via atomic recoils, and, through the Wouthuysen-Field effect, set the spin temperature of the 21-cm hyperfine (spin-flip) line of atomic hydrogen in competition with the resonant cosmic microwave background (CMB) photons. We show that the Lyman-$alpha$ photons also mediate energy transfer between the CMB photons and the thermal motions of the hydrogen atoms. In the absence of X-ray heating, this new mechanism is the major correction to the temperature of the adiabatically cooling gas ($sim 10 %$ at $z=17$), and is several times the size of the heating rate found in previous calculations. We also find that the effect is more dramatic in non-standard scenarios that either enhance the radio background above the CMB or invoke new physics to cool the gas in order to explain the EDGES results. The coupling with the radio background can reduce the depth of the 21-cm absorption feature by almost a factor of two relative to the case with no sources of heating, and prevent the feature from developing a flattened bottom. As an inevitable consequence of the UV background that generates the absorption feature, this heating should be accounted for in any theoretical prediction.
We derive the evolution of the energy deposition in the intergalactic medium (IGM) by dark matter (DM) decays/annihilations for both sterile neutrinos and light dark matter (LDM) particles. At z > 200 sterile neutrinos transfer a fraction f_abs~0.5 of their rest mass energy into the IGM; at lower redshifts this fraction becomes <~ 0.3 depending on the particle mass. The LDM particles can decay or annihilate. In both cases f_abs~0.4-0.9 at high (> 300) redshift, dropping to ~0.1 below z=100. These results indicate that the impact of DM decays/annihilations on the IGM thermal and ionization history is less important than previously thought. We find that sterile neutrinos (LDM) decays are able to increase the IGM temperature by z=5 at most up to 4K (100K), about 50-200 times less than predicted by estimates based on the assumption of complete energy transfer to the gas.
86 - F. Nicastro 2018
It has been known for decades that the observed number of baryons in the local universe falls about 30-40% short of the total number of baryons predicted by Big-Bang Nucleosynthesis, as inferred from density fluctuations of the Cosmic Microwave Background and seen during the first 2-3 billion years of the universe in the so called Lyman-alpha Forest. A theoretical solution to this paradox locates the missing baryons in the hot and tenuous filamentary gas between galaxies, known as the warm-hot intergalactic medium. However, it is difficult to detect them there because the largest by far constituent of this gas - hydrogen - is mostly ionized and therefore almost invisible in far-ultraviolet spectra with typical signal-to-noise ratios. Indeed, despite the large observational efforts, only a few marginal claims of detection have been made so far. Here we report observations of two absorbers of highly ionized oxygen (OVII) in the high signal-to-noise-ratio X-ray spectrum of a quasar at redshift >0.4. These absorbers show no variability over a 2-year timescale and have no associated cold absorption, making the assumption that they originate from the quasars intrinsic outflow or the host galaxys interstellar medium implausible. The OVII systems lie in regions characterized by large (x4 compared to average) galaxy over-densities and their number (down to the sensitivity threshold of our data), agrees well with numerical simulation predictions for the long-sought warm-hot intergalactic medium (WHIM). We conclude that the missing baryons have been found.
Using the Cosmic Origins Spectrograph aboard the Hubble Space Telescope, we measured the abundances of six ions (C III, C IV, Si III, Si IV, N V, O VI) in the low-redshift (z < 0.4) intergalactic medium and explored C and Si ionization corrections from adjacent ion stages. Both C IV and Si IV have increased in abundance by a factor of ~10 from z = 5.5 to the present. We derive ion mass densities, (rho_ion) = (Omega_ion)(rho_cr) with Omega_ion expressed relative to closure density. Our models of the mass-abundance ratios, (Si III / Si IV) = 0.67(+0.35,-0.19), (C III / C IV) = 0.70(+0.43,-0.20), and (Omega_CIII + Omega_CIV) / (Omega_SiIII + Omega_SiIV) = 4.9(+2.2,-1.1), are consistent with a hydrogen photoionization rate Gamma_H = (8 +/- 2) x 10^{-14} s^{-1} at z < 0.4 and specific intensity I_0 = (3 +/- 1) x 10^{-23} erg/(cm^2 s Hz sr) at the Lyman limit. We find mean photoionization parameter log U = -1.5 +/- 0.4, baryon overdensity Delta_b = 200 +/- 50, and Si/C enhanced to three times its solar ratio (enhancement of alpha-process elements). We compare these metal abundances to the expected IGM enrichment and abundances in higher photoionized states of carbon (C V) and silicon (Si V, Si VI, Si VII). Our ionization modeling infers IGM metal densities of (5.4 +/- 0.5) x 10^5 M_sun / Mpc^3 in the photoionized Lya forest traced by the C and Si ions and (9.1 +/- 0.6) x 10^5 M_sun / Mpc^3 in hotter gas traced by O VI. Combining both phases, the heavy elements in the IGM have mass density rho_Z = (1.5 +/- 0.8) x 10^6 M_sun / Mpc^3 or Omega_Z = 10^{-5}. This represents 10 +/- 5 percent of the metals produced by (6 +/- 2) x 10^8 M_sun / Mpc^3 of integrated star formation with yield y_m = 0.025 +/- 0.010. The missing metals at low redshift may reside within galaxies and in undetected ionized gas in galaxy halos and circumgalactic medium.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا