Do you want to publish a course? Click here

Convergence, Continuity and Recurrence in Dynamic Epistemic Logic

147   0   0.0 ( 0 )
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

The paper analyzes dynamic epistemic logic from a topological perspective. The main contribution consists of a framework in which dynamic epistemic logic satisfies the requirements for being a topological dynamical system thus interfacing discrete dynamic logics with continuous mappings of dynamical systems. The setting is based on a notion of logical convergence, demonstratively equivalent with convergence in Stone topology. Presented is a flexible, parametrized family of metrics inducing the latter, used as an analytical aid. We show maps induced by action model transformations continuous with respect to the Stone topology and present results on the recurrent behavior of said maps.



rate research

Read More

232 - Yusuke Kawamoto 2019
We introduce a modal logic for describing statistical knowledge, which we call statistical epistemic logic. We propose a Kripke model dealing with probability distributions and stochastic assignments, and show a stochastic semantics for the logic. To our knowledge, this is the first semantics for modal logic that can express the statistical knowledge dependent on non-deterministic inputs and the statistical significance of observed results. By using statistical epistemic logic, we express a notion of statistical secrecy with a confidence level. We also show that this logic is useful to formalize statistical hypothesis testing and differential privacy in a simple and abstract manner.
In this paper we introduce a computational-level model of theory of mind (ToM) based on dynamic epistemic logic (DEL), and we analyze its computational complexity. The model is a special case of DEL model checking. We provide a parameterized complexity analysis, considering several aspects of DEL (e.g., number of agents, size of preconditions, etc.) as parameters. We show that model checking for DEL is PSPACE-hard, also when restricted to single-pointed models and S5 relations, thereby solving an open problem in the literature. Our approach is aimed at formalizing current intractability claims in the cognitive science literature regarding computational models of ToM.
In this paper we study the solvability of the equality negation task in a simple wait-free model where processes communicate by reading and writing shared variables or exchanging messages. In this task, two processes start with a private input value in the set {0,1,2}, and after communicating, each one must decide a binary output value, so that the outputs of the processes are the same if and only if the input values of the processes are different. This task is already known to be unsolvable; our goal here is to prove this result using the dynamic epistemic logic (DEL) approach introduced by Goubault, Ledent and Rajsbaum in GandALF 2018. We show that in fact, there is no epistemic logic formula that explains why the task is unsolvable. We fix this issue by extending the language of our DEL framework, which allows us to construct such a formula, and discuss its utility.
131 - Marta Bilkova 2021
This paper revisits the multi-agent epistemic logic presented in [10], where agents and sets of agents are replaced by abstract, intensional names. We make three contributions. First, we study its model theory, providing adequate notions of bisimulation and frame morphisms, and use them to study the logics expressive power and definability. Second, we show that the logic has a natural neighborhood semantics, which in turn allows to show that the axiomatization in [10] does not rely on possibly controversial introspective properties of knowledge. Finally, we extend the logic with common and distributed knowledge operators, and provide a sound and complete axiomatization for each of these extensions. These results together put the original epistemic logic with names in a more modern context and opens the door for a logical analysis of epistemic phenomena where group membership is uncertain or variable.
This paper presents a two-dimensional modal logic for reasoning about the changing patterns of knowledge and social relationships in networks organised on the basis of a symmetric friendship relation, providing a precise language for exploring logic in the community [11]. Agents are placed in the model, allowing us to express such indexical facts as I am your friend and You, my friends, are in danger. The technical framework for this work is general dynamic dynamic logic (GDDL) [4], which provides a general method for extending modal logics with dynamic operators for reasoning about a wide range of model-transformations, starting with those definable in propositional dynamic logic (PDL) and extended to allow for the more subtle operators involved in, for example, private communication, as represented in dynamic epistemic logic (DEL) and related systems. We provide a hands-on introduction to GDDL, introducing elements of the formalism as we go, but leave the reader to consult [4] for technical details. Instead, the purpose of this paper is to investigate a number of conceptual issues that arise when considering communication between agents in such networks, both from one agent to another, and broadcasts to socially-defined groups of agents, such as the group of my friends.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا