No Arabic abstract
We derive expressions for the cross section of the multiparton interactions based on the analysis of the relevant Feynman diagrams. We express the cross sections through the double (triple, ...) generalized parton distributions (GPDs). In the mean field approximation for the double GPDs the answer is expressed through the integral over two gluon form factor which was measured in the exclusive DIS vector meson production.We explain under what conditions the derived expressions correspond to an intuitive picture of hard interactions in the impact parameter representation. The mean field approximation in which correlations of the partons are neglected fail to explain the data, while pQCD induced correlation enhance large $p_perp$ and $ 0.001 < x < 0.1$ typically enhance the cross section by a factor of 1.5 -- 2 explaining the current data. We argue that in the small x kinematics ($10^{-4} le x le 10^{-3}$) where effects of perturbative correlations diminish, the nonperturbative mechanism kicks in and generates positive correlations comparable in magnitude with the perturbative ones. We explain how our technique can be used for calculations of MPI in the proton - nucleus scattering. The interplay of hard interactions and underlying event is discussed, as well as different geometric pictures for each of MPI mechanisms-pQCD, nonperturbative correlations and mean field. Predictions for value of effs for various processes and a wide range of kinematics are given. We show that together different MPI mechanisms give good description of experimental data, both at Tvatron, and LHC, including the central kinematics studied by ATLAS and CMS detectors, and forward (heavy flavors) kinematics studied by LHCb.
We demonstrate that perturbative QCD leads to positive 3D parton--parton correlations inside nucleon explaining a factor two enhancement of the cross section of multi-parton interactions observed at Tevatron at $x_ige 0.01$ as compared to the predictions of the independent parton approximation. We also find that though perturbative correlations decrease with $x$ decreasing, the nonperturbative mechanism kicks in and should generate correlation which, at $x$ below $10^{-3}$, is comparable in magnitude with the perturbative one for $xsim 0.01$.
We present predictions for the double parton scattering (DPS) four-jet production cross sections in $pA$ collisions at the LHC. Relying on the experimental capabilities to correlate centrality with impact parameter $B$ of the proton-nucleus collision, we discuss a strategy to extract the double parton scattering contributions in $pA$ collisions, which gives direct access to double parton distribution in the nucleon. We show that the production cross sections via DPS of four jets, out of which two may be light- or heavy-quark jets, are large enough to allow the method to be used already with data accumulated in 2016 $pA$ run.
A phenomenological study of the isolated photon production in high energy $pp$ and $pA$ collisions at RHIC and LHC energies is performed. Using the color dipole approach we investigate the production cross section differential in the transverse momentum of the photon considering three different phenomenological models for the universal dipole cross section. We also present the predictions for the rapidity dependence of the ratio of $pA$ to $pp$ cross sections. As a further test of the formalism, for different energies and photon rapidites we analyse the correlation function in azimuthal angle $Deltaphi$ between the photon and a forward pion. The characteristic double-peak structure of the correlation function around $Delta phisimeq pi$ observed previously for Drell-Yan pair production is found for isolated photon emitted into the forward rapidity region which can be tested by future experiments.
We present results on Zjj production via double parton scattering in pA collisions at the LHC. We perform the analysis at leading and next-leading order accuracy with different sets of cuts on jet transverse momenta and accounting for the single parton scattering background. By exploiting the experimental capability to measure the centrality dependence of the cross section, we discuss the feasibility of DPS observation in already collected data at the LHC and in future runs.
Global perturbative QCD analyses, based on large data sets from electron-proton and hadron collider experiments, provide tight constraints on the parton distribution function (PDF) in the proton. The extension of these analyses to nuclear parton distributions (nPDF) has attracted much interest in recent years. nPDFs are needed as benchmarks for the characterization of hot QCD matter in nucleus-nucleus collisions, and attract further interest since they may show novel signatures of non-linear density-dependent QCD evolution. However, it is not known from first principles whether the factorization of long-range phenomena into process-independent parton distribution, which underlies global PDF extractions for the proton, extends to nuclear effects. As a consequence, assessing the reliability of nPDFs for benchmark calculations goes beyond testing the numerical accuracy of their extraction and requires phenomenological tests of the factorization assumption. Here we argue that a proton-nucleus collision program at the LHC would provide a set of measurements allowing for unprecedented tests of the factorization assumption underlying global nPDF fits.