Do you want to publish a course? Click here

Navigating the Data Lake with Datamaran: Automatically Extracting Structure from Log Datasets

167   0   0.0 ( 0 )
 Added by Yihan Gao
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

Organizations routinely accumulate semi-structured log datasets generated as the output of code; these datasets remain unused and uninterpreted, and occupy wasted space - this phenomenon has been colloquially referred to as data lake problem. One approach to leverage these semi-structured datasets is to convert them into a structured relational format, following which they can be analyzed in conjunction with other datasets. We present Datamaran, an tool that extracts structure from semi-structured log datasets with no human supervision. Datamaran automatically identifies field and record endpoints, separates the structured parts from the unstructured noise or formatting, and can tease apart multiple structures from within a dataset, in order to efficiently extract structured relational datasets from semi-structured log datasets, at scale with high accuracy. Compared to other unsupervised log dataset extraction tools developed in prior work, Datamaran does not require the record boundaries to be known beforehand, making it much more applicable to the noisy log files that are ubiquitous in data lakes. Datamaran can successfully extract structured information from all datasets used in prior work, and can achieve 95% extraction accuracy on automatically collected log datasets from GitHub - a substantial 66% increase of accuracy compared to unsupervised schemes from prior work. Our user study further demonstrates that the extraction results of Datamaran are closer to the desired structure than competing algorithms.



rate research

Read More

We consider the problem of creating a navigation structure that allows a user to most effectively navigate a data lake. We define an organization as a graph that contains nodes representing sets of attributes within a data lake and edges indicating subset relationships among nodes. We present a new probabilistic model of how users interact with an organization and define the likelihood of a user finding a table using the organization. We propose the data lake organization problem as the problem of finding an organization that maximizes the expected probability of discovering tables by navigating an organization. We propose an approximate algorithm for the data lake organization problem. We show the effectiveness of the algorithm on both real data lakes containing data from open data portals and on benchmarks that emulate the observed characteristics of real data lakes. Through a formal user study, we show that navigation can help users discover relevant tables that cannot be found by keyword search. In addition, in our study, 42% of users preferred the use of navigation and 58% preferred keyword search, suggesting these are complementary and both useful modalities for data discovery in data lakes. Our experiments show that data lake organizations take into account the data lake distribution and outperform an existing hand-curated taxonomy and a common baseline organization.
Data Lake (DL) is a Big Data analysis solution which ingests raw data in their native format and allows users to process these data upon usage. Data ingestion is not a simple copy and paste of data, it is a complicated and important phase to ensure that ingested data are findable, accessible, interoperable and reusable at all times. Our solution is threefold. Firstly, we propose a metadata model that includes information about external data sources, data ingestion processes, ingested data, dataset veracity and dataset security. Secondly, we present the algorithms that ensure the ingestion phase (data storage and metadata instanciation). Thirdly, we introduce a developed metadata management system whereby users can easily consult different elements stored in DL.
124 - Pengfei Liu 2021
With new emerging technologies, such as satellites and drones, archaeologists collect data over large areas. However, it becomes difficult to process such data in time. Archaeological data also have many different formats (images, texts, sensor data) and can be structured, semi-structured and unstructured. Such variety makes data difficult to collect, store, manage, search and analyze effectively. A few approaches have been proposed, but none of them covers the full data lifecycle nor provides an efficient data management system. Hence, we propose the use of a data lake to provide centralized data stores to host heterogeneous data, as well as tools for data quality checking, cleaning, transformation, and analysis. In this paper, we propose a generic, flexible and complete data lake architecture. Our metadata management system exploits goldMEDAL, which is the most complete metadata model currently available. Finally, we detail the concrete implementation of this architecture dedicated to an archaeological project.
System logs record detailed runtime information of software systems and are used as the main data source for many tasks around software engineering. As modern software systems are evolving into large scale and complex structures, logs have become one type of fast-growing big data in industry. In particular, such logs often need to be stored for a long time in practice (e.g., a year), in order to analyze recurrent problems or track security issues. However, archiving logs consumes a large amount of storage space and computing resources, which in turn incurs high operational cost. Data compression is essential to reduce the cost of log storage. Traditional compression tools (e.g., gzip) work well for general texts, but are not tailed for system logs. In this paper, we propose a novel and effective log compression method, namely logzip. Logzip is capable of extracting hidden structures from raw logs via fast iterative clustering and further generating coherent intermediate representations that allow for more effective compression. We evaluate logzip on five large log datasets of different system types, with a total of 63.6 GB in size. The results show that logzip can save about half of the storage space on average over traditional compression tools. Meanwhile, the design of logzip is highly parallel and only incurs negligible overhead. In addition, we share our industrial experience of applying logzip to Huaweis real products.
In 2010, the concept of data lake emerged as an alternative to data warehouses for big data management. Data lakes follow a schema-on-read approach to provide rich and flexible analyses. However, although trendy in both the industry and academia, the concept of data lake is still maturing, and there are still few methodological approaches to data lake design. Thus, we introduce a new approach to design a data lake and propose an extensive metadata system to activate richer features than those usually supported in data lake approaches. We implement our approach in the AUDAL data lake, where we jointly exploit both textual documents and tabular data, in contrast with structured and/or semi-structured data typically processed in data lakes from the literature. Furthermore, we also innovate by leveraging metadata to activate both data retrieval and content analysis, including Text-OLAP and SQL querying. Finally, we show the feasibility of our approach using a real-word use case on the one hand, and a benchmark on the other hand.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا