Do you want to publish a course? Click here

Pivotal Estimation via Self-Normalization for High-Dimensional Linear Models with Error in Variables

115   0   0.0 ( 0 )
 Added by Alexandre Belloni
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

We propose a new estimator for the high-dimensional linear regression model with observation error in the design where the number of coefficients is potentially larger than the sample size. The main novelty of our procedure is that the choice of penalty parameters is pivotal. The estimator is based on applying a self-normalization to the constraints that characterize the estimator. Importantly, we show how to cast the computation of the estimator as the solution of a convex program with second order cone constraints. This allows the use of algorithms with theoretical guarantees and reliable implementation. Under sparsity assumptions, we derive $ell_q$-rates of convergence and show that consistency can be achieved even if the number of regressors exceeds the sample size. We further provide a simple to implement rule to threshold the estimator that yields a provably sparse estimator with similar $ell_2$ and $ell_1$-rates of convergence. The thresholds are data-driven and component dependents. Finally, we also study the rates of convergence of estimators that refit the data based on a selected support with possible model selection mistakes. In addition to our finite sample theoretical results that allow for non-i.i.d. data, we also present simulations to compare the performance of the proposed estimators.



rate research

Read More

195 - Mengyan Li , Runze Li , Yanyuan Ma 2020
For a high-dimensional linear model with a finite number of covariates measured with error, we study statistical inference on the parameters associated with the error-prone covariates, and propose a new corrected decorrelated score test and the corresponding one-step estimator. We further establish asymptotic properties of the newly proposed test statistic and the one-step estimator. Under local alternatives, we show that the limiting distribution of our corrected decorrelated score test statistic is non-central normal. The finite-sample performance of the proposed inference procedure is examined through simulation studies. We further illustrate the proposed procedure via an empirical analysis of a real data example.
We study high-dimensional linear models with error-in-variables. Such models are motivated by various applications in econometrics, finance and genetics. These models are challenging because of the need to account for measurement errors to avoid non-vanishing biases in addition to handle the high dimensionality of the parameters. A recent growing literature has proposed various estimators that achieve good rates of convergence. Our main contribution complements this literature with the construction of simultaneous confidence regions for the parameters of interest in such high-dimensional linear models with error-in-variables. These confidence regions are based on the construction of moment conditions that have an additional orthogonal property with respect to nuisance parameters. We provide a construction that requires us to estimate an additional high-dimensional linear model with error-in-variables for each component of interest. We use a multiplier bootstrap to compute critical values for simultaneous confidence intervals for a subset $S$ of the components. We show its validity despite of possible model selection mistakes, and allowing for the cardinality of $S$ to be larger than the sample size. We apply and discuss the implications of our results to two examples and conduct Monte Carlo simulations to illustrate the performance of the proposed procedure.
161 - Song Xi Chen , Bin Guo 2014
We consider testing regression coefficients in high dimensional generalized linear models. An investigation of the test of Goeman et al. (2011) is conducted, which reveals that if the inverse of the link function is unbounded, the high dimensionality in the covariates can impose adverse impacts on the power of the test. We propose a test formation which can avoid the adverse impact of the high dimensionality. When the inverse of the link function is bounded such as the logistic or probit regression, the proposed test is as good as Goeman et al. (2011)s test. The proposed tests provide p-values for testing significance for gene-sets as demonstrated in a case study on an acute lymphoblastic leukemia dataset.
120 - Zhe Fei , Yi Li 2019
The focus of modern biomedical studies has gradually shifted to explanation and estimation of joint effects of high dimensional predictors on disease risks. Quantifying uncertainty in these estimates may provide valuable insight into prevention strategies or treatment decisions for both patients and physicians. High dimensional inference, including confidence intervals and hypothesis testing, has sparked much interest. While much work has been done in the linear regression setting, there is lack of literature on inference for high dimensional generalized linear models. We propose a novel and computationally feasible method, which accommodates a variety of outcome types, including normal, binomial, and Poisson data. We use a splitting and smoothing approach, which splits samples into two parts, performs variable selection using one part and conducts partial regression with the other part. Averaging the estimates over multiple random splits, we obtain the smoothed estimates, which are numerically stable. We show that the estimates are consistent, asymptotically normal, and construct confidence intervals with proper coverage probabilities for all predictors. We examine the finite sample performance of our method by comparing it with the existing methods and applying it to analyze a lung cancer cohort study.
High-dimensional linear models with endogenous variables play an increasingly important role in recent econometric literature. In this work we allow for models with many endogenous variables and many instrument variables to achieve identification. Because of the high-dimensionality in the second stage, constructing honest confidence regions with asymptotically correct coverage is non-trivial. Our main contribution is to propose estimators and confidence regions that would achieve that. The approach relies on moment conditions that have an additional orthogonal property with respect to nuisance parameters. Moreover, estimation of high-dimension nuisance parameters is carried out via new pivotal procedures. In order to achieve simultaneously valid confidence regions we use a multiplier bootstrap procedure to compute critical values and establish its validity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا