Do you want to publish a course? Click here

Molecular and Atomic Clouds toward the Wolf-Rayet Nebula NGC 2359: Possible Evidence for Isolated High-Mass Star Formation Triggered by a Cloud-Cloud Collision

508   0   0.0 ( 0 )
 Added by Hidetoshi Sano
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

NGC 2359 is an HII region located in the outer Galaxy that contains the isolated Wolf-Rayet (WR) star HD 56925. We present millimeter/submillimeter observations of $^{12}$CO($J$ = 1-0, 3-2) line emission toward the entire nebula. We identified that there are three molecular clouds at VLSR $sim$37, $sim$54, and $sim$67 km s$^{-1}$, and three HI clouds: two of them are at VLSR $sim$54 km s$^{-1}$ and the other is at $sim$63 km s$^{-1}$. These clouds except for the CO cloud at 67 km s$^{-1}$ are limb-brightened in the radio continuum, suggesting part of each cloud has been ionized. We newly found an expanding gas motion of CO/HI, whose center and expansion velocities are $sim$51 and $sim$4.5 km s$^{-1}$, respectively. This is consistent with large line widths of the CO and HI clouds at 54 km s$^{-1}$. The kinematic temperature of CO clouds at 37 and 54 km s$^{-1}$ are derived to be 17 and 61 K, respectively, whereas that of the CO cloud at 67 km s$^{-1}$ is only 6 K, indicating that the former two clouds have been heated by strong UV radiation. We concluded that the 37 and 54 km s$^{-1}$ CO clouds and three HI clouds are associated with NGC 2359, even if these clouds have different velocities. Although the velocity difference including the expanding motion are typical signatures of the stellar feedback from the exciting star, our analysis revealed that the observed large momentum for the 37 km s$^{-1}$ CO cloud cannot be explained only by the total wind momentum of the WR star and its progenitor. We therefore propose an alternative scenario that the isolated high-mass progenitor of HD 56925 was formed by a collision between the CO clouds at 37 and 54 km s$^{-1}$. If we apply the collision scenario, NGC 2359 corresponds to the final phase of the cloud-cloud collision.



rate research

Read More

We performed new comprehensive $^{13}$CO($J$=2--1) observations toward NGC 2024, the most active star forming region in Orion B, with an angular resolution of $sim$100 obtained with NANTEN2. We found that the associated cloud consists of two independent velocity components. The components are physically connected to the H{sc ii} region as evidenced by their close correlation with the dark lanes and the emission nebulosity. The two components show complementary distribution with a displacement of $sim$0.6 pc. Such complementary distribution is typical to colliding clouds discovered in regions of high-mass star formation. We hypothesize that a cloud-cloud collision between the two components triggered the formation of the late O-type stars and early B stars localized within 0.3 pc of the cloud peak. The duration time of the collision is estimated to be 0.3 million years from a ratio of the displacement and the relative velocity $sim$3 km s$^{-1}$ corrected for probable projection. The high column density of the colliding cloud $sim$10$^{23}$ cm$^{-2}$ is similar to those in the other high-mass star clusters in RCW 38, Westerlund 2, NGC 3603, and M42, which are likely formed under trigger by cloud-cloud collision. The present results provide an additional piece of evidence favorable to high-mass star formation by a major cloud-cloud collision in Orion.
We present new large field observations of molecular clouds with NANTEN2 toward the super star cluster NGC3603 in the transitions 12CO(J=2-1, J=1-0) and 13CO(J=2-1, J=1-0). We suggest that two molecular clouds at 13 km s-1 and 28 km s-1 are associated with NGC3603 as evidenced by higher temperatures toward the H II region as well as morphological correspondence. The mass of the clouds is too small to gravitationally bind them, given their relative motion of ~20 km s-1. We suggest that the two clouds collided with each other a Myr ago to trigger the formation of the super star cluster. This scenario is able to explain the origin of the highest mass stellar population in the cluster which is as young as a Myr and is segregated within the central sub-pc of the cluster. This is the second super star cluster along side Westerlund2 where formation may have been triggered by a cloud-cloud collision.
A collision between two molecular clouds is one possible candidate for high-mass star formation. The HII region RCW 36, located in the Vela molecular ridge, contains a young star cluster with two O-type stars. We present new CO observations of RCW 36 with NANTEN2, Mopra, and ASTE using $^{12}$CO($J$ = 1-0, 2-1, 3-2) and $^{13}$CO($J$ = 2-1) line emissions. We have discovered two molecular clouds lying at the velocities $V_mathrm{LSR} sim$5.5 and 9 km s$^{-1}$. Both clouds are likely to be physically associated with the star cluster, as verified by the good spatial correspondence among the two clouds, infrared filaments, and the star cluster. We also found a high intensity ratio of $sim$0.6-1.2 for CO $J$ = 3-2 / 1-0 toward both clouds, indicating that the gas temperature has been increased due to heating by the O-type stars. We propose that the O-type stars in RCW 36 were formed by a collision between the two clouds, with a relative velocity separation of 5 km s$^{-1}$. The complementary spatial distributions and the velocity separation of the two clouds are in good agreement with observational signatures expected for O-type star formation triggered by a cloud-cloud collision. We also found a displacement between the complementary spatial distributions of the two clouds, which we estimate to be 0.3 pc assuming the collision angle to be 45$^{circ}$ relative to the line-of-sight. We estimate the collision timescale to be $sim$10$^5$ yr. It is probable that the cluster age by Ellerbroek et al. (2013b) is dominated by the low-mass members which were not formed under the triggering by cloud-cloud collision, and that the O-type stars in the center of the cluster are explained by the collisional triggering independently from the low-mass star formation.
We analyzed the NANTEN2 13CO (J=2-1 and 1-0) datasets in NGC 2024. We found that the cloud consists of two velocity components, whereas the cloud shows mostly single-peaked CO profiles. The two components are physically connected to the HII region as evidenced by their close correlation with the dark lanes and the emission nebulosity. The two components show complementary distribution with a displacement of 0.4 pc. Such complementary distribution is typical to colliding clouds discovered in regions of high-mass star formation. We hypothesize that cloud-cloud collision between the two components triggered the formation of the late O stars and early B stars localized within 0.3 pc of the cloud peak. The collision timescale is estimated to be ~ 10^5 yrs from a ratio of the displacement and the relative velocity 3-4 km s-1 corrected for probable projection. The high column density of the colliding cloud 1023 cm-2 is similar to those in the other massive star clusters in RCW 38, Westerlund 2, NGC 3603, and M42, which are likely formed under trigger by cloud-cloud collision. The present results provide an additional piece of evidence favorable to high-mass star formation by a major cloud-cloud collision in Orion.
We report the first evidence for high-mass star formation triggered by collisions of molecular clouds in M33. Using the Atacama Large Millimeter/submillimeter Array, we spatially resolved filamentary structures of giant molecular cloud 37 in M33 using $^{12}$CO($J$ = 2-1), $^{13}$CO($J$ = 2-1), and C$^{18}$O($J$ = 2-1) line emission at a spatial resolution of $sim$2 pc. There are two individual molecular clouds with a systematic velocity difference of $sim$6 km s$^{-1}$. Three continuum sources representing up to $sim$10 high-mass stars with the spectral types of B0V-O7.5V are embedded within the densest parts of molecular clouds bright in the C$^{18}$O($J$ = 2-1) line emission. The two molecular clouds show a complementary spatial distribution with a spatial displacement of $sim$6.2 pc, and show a V-shaped structure in the position-velocity diagram. These observational features traced by CO and its isotopes are consistent with those in high-mass star-forming regions created by cloud-cloud collisions in the Galactic and Magellanic Cloud HII regions. Our new finding in M33 indicates that the cloud-cloud collision is a promising process to trigger high-mass star formation in the Local Group.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا