Do you want to publish a course? Click here

Theory of Coupled Resonator Optical Waveguides (CROW) Exhibiting High Order Exceptional Points of Degeneracy

84   0   0.0 ( 0 )
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a novel approach and a theoretical framework for generating high order exceptional points of degeneracy (EPD) in photonic structures based on periodic coupled resonators optical waveguides (CROWs). Such EPDs involve the coalescence of Floquet-Bloch eigenwaves in CROWs, without the presence of gain and loss, which is in contrast to the requirement of Parity-Time (PT) symmetry to develop exceptional points based on gain and loss balance. The EPDs arise here by introducing symmetry breaking in a conventional chain of coupled resonators through coupling the chain of resonators to an adjacent uniform optical waveguide, which leads to unique modal characteristics that cannot be realized in conventional CROWs. Such remarkable characteristics include high quality factors (Q-factor) and strong field enhancement, even without any mirrors at the two ends of a cavity. We show for the first time the capability of CROWs to exhibit EPDs of various order; including the degenerate band edge (DBE) and the stationary inflection point (SIP). The proposed CROW of finite length shows enhanced quality factor when operating near the DBE, and the Q-factor exhibits an anomalous scaling with the CROWs length. We develop the theory of EPDs in such unconventional CROW using coupled-wave equations, and we derive an analytical expression for the dispersion relation. The proposed unconventional CROW concepts have various potential applications including Q-switching, nonlinear devices, lasers, and extremely sensitive sensors.



rate research

Read More

We present a transmission line theory of exceptional points of degeneracy (EPD) in coupled-mode guiding structures, i.e., a theory that illustrates the characteristics of coupled electromagnetic modes under a special dispersion degeneracy condition, yet unexplored in the contest of gain and loss. We demonstrate the concept of Parity-Time ($cal{PT}$)-symmetry in coupled uniform waveguides with balanced and symmetric gain and loss and how this condition is associated with a second order EPD. We show that by introducing gain into naturally lossy structures provides for the conditions whereby exceptional points of non-Hermitian degeneracies can be manifested, such as in $cal{PT}$- symmetric structures. Furthermore, we also demonstrate that $cal{PT}$- symmetry, despite being the method often suggested for obtaining non-Hermitian degeneracies at optical frequencies, is not a necessary condition and indeed we show that EPD can be obtained with broken topological symmetry in uniform TLs. Operating near such special degeneracy conditions leads to potential performance enhancement in a variety of microwave and optical resonators, and devices such as distributed oscillators, including lasers, amplifiers, radiating arrays, pulse compressors, and Qswitching sensors.
We demonstrate the existence of exceptional points of degeneracy (EPD) of periodic eigenstates in non-Hermitian coupled chains of dipolar scatterers. Guided modes supported by these structures can exhibit an EPD in their dispersion diagram at which two or more Bloch eigenstates coalesce, in both their eigenvectors and eigenvalues. We show a second-order modal EPD associated with the parity-time ($cal{PT}$) symmetry condition, at which each particle pair in the double chain exhibits balanced gain and loss. Furthermore, we also demonstrate a fourth-order EPD occurring at the band edge. Such degeneracy condition was previously referred to as a degenerate band edge in lossless anisotropic photonic crystals. Here, we rigorously show it under the occurrence of gain and loss balance for a discrete guiding system. We identify a more general regime of gain and loss balance showing that $cal{PT}$-symmetry is not necessary to realize EPDs. Furthermore, we investigate the degree of detuning of the EPD when the geometrical symmetry or balanced condition is broken. These findings open unprecedented avenues toward superior light localization and transport with application to high-Q resonators utilized in sensors, filters, low-threshold switching and lasing.
We uncover the existence of Dirac and exceptional points in waveguides made of anisotropic materials, and study the transition between them. Dirac points in the dispersion diagram appear at propagation directions where the matrix describing the eigenvalue problem for bound states splits into two blocks, sorting the eigenmodes either by polarization or by inner mode symmetry. Introducing a non-Hermitian channel via a suitable leakage mechanism causes the Dirac points to transform into exceptional points connected by a Fermi arc. The exceptional points arise as improper hybrid leaky states and, importantly, are found to occur always out of the anisotropy symmetry planes.
123 - JungYun Han , Clemens Gneiting , 2019
We show that a synthetic pseudospin-momentum coupling can be used to design quasi-one-dimensional disorder-resistant coupled resonator optical waveguides (CROW). In this structure, the propagating Bloch waves exhibit a pseudospin-momentum locking at specific momenta where backscattering is suppressed. We quantify this resistance to disorder using two methods. First, we calculate the Anderson localization length $xi$, obtaining an order of magnitude enhancement compared to a conventional CROW for typical device parameters. Second, we study propagation in the time domain, finding that the loss of wavepacket purity in the presence of disorder rapidly saturates, indicating the preservation of phase information before the onset of Anderson localization. Our approach of directly optimizing the bulk Bloch waves is a promising alternative to disorder-robust transport based on higher dimensional topological edge states.
The finite gain-bandwidth product is a fundamental figure of merit that restricts the operation of standard optical amplifiers. In microcavity setups, this becomes a serious problem due to the narrow bandwidth of the device. Here we introduce a new design paradigm based on exceptional points, that relaxes this limitation and allows for building a new generation of optical amplifiers that exhibits better gain-bandwidth scaling relations. Importantly, our results can be extended to other physical systems such as acoustics and microwaves.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا