Do you want to publish a course? Click here

Static Stability Analysis of a Thin Plate with a Fixed Trailing Edge in Axial Subsonic Flow: Possio Integral Equation Approach

70   0   0.0 ( 0 )
 Added by Amjad Tuffaha
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this work, the static stability of plates with fixed trailing edges in axial airflow is studied using the framework of Possio integral equation. First, we introduce a new derivation of a Possio integral equation that relates the pressure jump along thin plates to their downwash based on the linearization of the governing equations of an ideal compressible fluid. The steady state solution to the Possio equation is used to account for the aerodynamic forces in the steady state plate governing equation resulting in a singular differential-integral equation which is transformed to an integral equation. Next, we verify the solvability of the integral equation based on the Fredholm alternative for compact operators in Banach spaces and the contraction mapping theorem. Then, we derive explicit formulas for the characteristic equations of free-clamped and free-pinned plates. The minimum solutions to the characteristic equations are the divergence speeds which indicate when static instabilities start to occur. We show analytically that free-pinned plates are statically unstable. After that, we move to derive analytically flow speed intervals that correspond to static stability regions for free-clamped plates. We also resort to numerical computations to obtain an explicit formula for the divergence speed of free-clamped plates. Finally, we apply the obtained results on piezoelectric plates and we show that free-clamped piezoelectric plates are statically more stable than conventional free-clamped plates due to the piezoelectric coupling.



rate research

Read More

In this paper, the problem of compressible flow over a thin airfoil located near the ground is studied. A singular integral equation, also known as Possio equation, that relates the pressure jump along the airfoil to its downwash is derived. The derivation of the equation utilizes Laplace transform, Fourier transform, method of images, and theory of Mikhlin multipliers. The existence and uniqueness of solution to the Possio equation is verified for the steady state case and an approximate solution is obtained. The aerodynamic loads are then calculated based on the approximate solution. Moreover, the divergence speed of a continuum wing structure located near the ground is obtained based on the derived expressions for the aerodynamic loads.
Miniature heaters are immersed in flows of quantum fluid and the efficiency of heat transfer is monitored versus velocity, superfluid fraction and time. The fluid is $^4$He helium with a superfluid fraction varied from 71% down to 0% and an imposed velocity up to 3 m/s, while the characteristic sizes of heaters range from 1.3 $mu$m up to few hundreds of microns. At low heat fluxes, no velocity dependence is observed. In contrast, some velocity dependence emerges at larger heat flux, as reported previously, and three non-trivial properties of heat transfer are identified. First, at the largest superfluid fraction (71%), a new heat transfer regime appears at non-null velocities and it is typically 10% less conductive than at zero velocity. Second, the velocity dependence of the mean heat transfer is compatible with the square-root dependence observed in classical fluids. Surprisingly, the prefactor to this dependence is maximum for an intermediate superfluid fraction or temperature (around 2 K). Third, the heat transfer time series exhibit highly conductive short-lived events. These textit{cooling glitches} have a velocity-dependent characteristic time, which manifest itself as a broad and energetic peak in the spectrum of heat transfer time series, in the kHz range. After showing that the velocity dependence can be attributed to the breaking of superfluidity within a thin shell surrounding heaters, an analytical model of forced heat transfer in a quantum flow is developed to account for the properties reported above. We argue that large scale flow patterns must form around the heater, having a size proportional to the heat flux (here two decades larger than the heater diameter) and resulting in a turbulent wake. The observed spectral peaking of heat transfer is quantitatively consistent with the formation of a Von Karman vortex street in the wake of a bluff body.
Linear stability analysis is performed using a combination of two-dimensional Direct Simulation Monte Carlo (DSMC) method for the computation of the basic state and solution of the pertinent eigenvalue problem, as applied to the canonical boundary layer on a semi-infinite flat plate. Three different gases are monitored, namely nitrogen, argon and air, the latter as a mixture of 79% Nitrogen and 21% Oxygen at a range of free-stream Mach numbers corresponding to flight at an altitude of 55km. A neural network has been utilised to predict and smooth the raw DSMC data; the steady laminar profiles obtained are in very good agreement with those computed by (self-similar) boundary layer theory, under isothermal or adiabatic wall conditions, subject to the appropriate slip corrections computed in the DSMC method. The leading eigenmode results pertaining to the unsmoothed DSMC profiles are compared against those of the classic boundary layer theory. Small quantitative, but no significant qualitative differences between the results of the two classes of steady base flows have been found at all parameters examined. The frequencies of the leading eigenmodes at all conditions examined are practically identical, while perturbations corresponding to the DSMC profiles are found to be systematically more damped than their counterparts arising in the boundary layer at the conditions examined, when the correct velocity slip and temperature jump boundary conditions are imposed in the base flow profiles; by contrast, when the classic no-slip boundary conditions are used, less damped/more unstable profiles are obtained, which would lead the flow to earlier transition. On the other hand, the DSMC profiles smoothed by the neural network are marginally more stable than their unsmoothed counterparts.
We perform a three-dimensional, short-wavelength stability analysis on the numerically simulated two-dimensional flow past a circular cylinder for Reynolds numbers in the range $50le Rele300$; here, $Re = U_{infty}D/ u$ with $U_infty$, $D$ and $ u$ being the free-stream velocity, the diameter of the cylinder and the kinematic viscosity of the fluid, respectively. For a given $Re$, inviscid local stability equations from the geometric optics approach are solved on three distinct closed fluid particle trajectories (denoted as orbits 1, 2 & 3) for purely transverse perturbations. The inviscid instability on orbits 1 & 2, which are symmetric counterparts of one another, is shown to undergo bifurcations at $Reapprox50$ and $Reapprox250$. Upon incorporating finite-wavenumber, finite-Reynolds number effects to compute corrected local instability growth rates, the inviscid instability on orbits 1 & 2 is shown to be suppressed for $Relesssim262$. Orbits 1 & 2 are thus shown to exhibit a synchronous instability for $Regtrsim262$, which is remarkably close to the critical Reynolds number for the mode-B secondary instability. Further evidence for the connection between the local instability on orbits 1 & 2, and the mode-B secondary instability, is provided via a comparison of the growth rate variation with span-wise wavenumber between the local and global stability approaches. In summary, our results strongly suggest that the three-dimensional short-wavelength instability on orbits 1 & 2 is a possible mechanism for the emergence of the mode B secondary instability.
We report the results of a complete modal and nonmodal linear stability analysis of the electrohydrodynamic flow (EHD) for the problem of electroconvection in the strong injection region. Convective cells are formed by Coulomb force in an insulating liquid residing between two plane electrodes subject to unipolar injection. Besides pure electroconvection, we also consider the case where a cross-flow is present, generated by a streamwise pressure gradient, in the form of a laminar Poiseuille flow. The effect of charge diffusion, often neglected in previous linear stability analyses, is included in the present study and a transient growth analysis, rarely considered in EHD, is carried out. In the case without cross-flow, a non-zero charge diffusion leads to a lower linear stability threshold and thus to a more unstable low. The transient growth, though enhanced by increasing charge diffusion, remains small and hence cannot fully account for the discrepancy of the linear stability threshold between theoretical and experimental results. When a cross-flow is present, increasing the strength of the electric field in the high-$Re$ Poiseuille flow yields a more unstable flow in both modal and nonmodal stability analyses. Even though the energy analysis and the input-output analysis both indicate that the energy growth directly related to the electric field is small, the electric effect enhances the lift-up mechanism. The symmetry of channel flow with respect to the centerline is broken due to the additional electric field acting in the wall-normal direction. As a result, the centers of the streamwise rolls are shifted towards the injector electrode, and the optimal spanwise wavenumber achieving maximum transient energy growth increases with the strength of the electric field.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا