Do you want to publish a course? Click here

Approximating the Minimum $k$-Section Width in Bounded-Degree Trees with Linear Diameter

124   0   0.0 ( 0 )
 Added by Tina Janne Schmidt
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

Minimum $k$-Section denotes the NP-hard problem to partition the vertex set of a graph into $k$ sets of sizes as equal as possible while minimizing the cut width, which is the number of edges between these sets. When $k$ is an input parameter and $n$ denotes the number of vertices, it is NP-hard to approximate the width of a minimum $k$-section within a factor of $n^c$ for any $c<1$, even when restricted to trees with constant diameter. Here, we show that every tree $T$ allows a $k$-section of width at most $(k-1) (2 + 16n / diam(T) ) Delta(T)$. This implies a polynomial-time constant-factor approximation for the Minimum $k$-Section Problem when restricted to trees with linear diameter and constant maximum degree. Moreover, we extend our results from trees to arbitrary graphs with a given tree decomposition.



rate research

Read More

The weight of a subgraph $H$ in $G$ is the sum of the degrees in $G$ of vertices of $H$. The {em height} of a subgraph $H$ in $G$ is the maximum degree of vertices of $H$ in $G$. A star in a given graph is minor if its center has degree at most five in the given graph. Lebesgue (1940) gave an approximate description of minor $5$-stars in the class of normal plane maps with minimum degree five. In this paper, we give two descriptions of minor $5$-stars in plane graphs with minimum degree five. By these descriptions, we can extend several results and give some new results on the weight and height for some special plane graphs with minimum degree five.
Given a positive integer $s$, the $s$-colour size-Ramsey number of a graph $H$ is the smallest integer $m$ such that there exists a graph $G$ with $m$ edges with the property that, in any colouring of $E(G)$ with $s$ colours, there is a monochromatic copy of $H$. We prove that, for any positive integers $k$ and $s$, the $s$-colour size-Ramsey number of the $k$th power of any $n$-vertex bounded degree tree is linear in $n$. As a corollary we obtain that the $s$-colour size-Ramsey number of $n$-vertex graphs with bounded treewidth and bounded degree is linear in $n$, which answers a question raised by Kamv{c}ev, Liebenau, Wood and Yepremyan [The size Ramsey number of graphs with bounded treewidth, arXiv:1906.09185 (2019)].
Tree-width and its linear variant path-width play a central role for the graph minor relation. In particular, Robertson and Seymour (1983) proved that for every tree~$T$, the class of graphs that do not contain $T$ as a minor has bounded path-width. For the pivot-minor relation, rank-width and linear rank-width take over the role from tree-width and path-width. As such, it is natural to examine if for every tree~$T$, the class of graphs that do not contain $T$ as a pivot-minor has bounded linear rank-width. We first prove that this statement is false whenever $T$ is a tree that is not a caterpillar. We conjecture that the statement is true if $T$ is a caterpillar. We are also able to give partial confirmation of this conjecture by proving: (1) for every tree $T$, the class of $T$-pivot-minor-free distance-hereditary graphs has bounded linear rank-width if and only if $T$ is a caterpillar; (2) for every caterpillar $T$ on at most four vertices, the class of $T$-pivot-minor-free graphs has bounded linear rank-width. To prove our second result, we only need to consider $T=P_4$ and $T=K_{1,3}$, but we follow a general strategy: first we show that the class of $T$-pivot-minor-free graphs is contained in some class of $(H_1,H_2)$-free graphs, which we then show to have bounded linear rank-width. In particular, we prove that the class of $(K_3,S_{1,2,2})$-free graphs has bounded linear rank-width, which strengthens a known result that this graph class has bounded rank-width.
Minimum Bisection denotes the NP-hard problem to partition the vertex set of a graph into two sets of equal sizes while minimizing the width of the bisection, which is defined as the number of edges between these two sets. We first consider this problem for trees and prove that the minimum bisection width of every tree $T$ on $n$ vertices satisfies $MinBis(T) leq 8 n Delta(T) / diam(T)$. Second, we generalize this to arbitrary graphs with a given tree decomposition $(T,X)$ and give an upper bound on the minimum bisection width that depends on the structure of $(T,X)$. Moreover, we show that a bisection satisfying our general bound can be computed in time proportional to the encoding length of the tree decomposition when the latter is provided as input.
We study optimal minimum degree conditions when an $n$-vertex graph $G$ contains an $r$-regular $r$-connected subgraph. We prove for $r$ fixed and $n$ large the condition to be $delta(G) ge frac{n+r-2}{2}$ when $nr equiv 0 pmod 2$. This answers a question of M.~Kriesell.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا