No Arabic abstract
The dynamics of membrane undulations inside a viscous solvent is governed by distinctive, anomalous, power laws. Inside a viscoelastic continuous medium these universal behaviors are modified by the specific bulk viscoelastic spectrum. Yet, in structured fluids the continuum limit is reached only beyond a characteristic correlation length. We study the crossover to this asymptotic bulk dynamics. The analysis relies on a recent generalization of the hydrodynamic interaction in structured fluids, which shows a slow spatial decay of the interaction toward the bulk limit. For membranes which are weakly coupled to the structured medium we find a wide crossover regime characterized by different, universal, dynamic power laws. We discuss various systems for which this behavior is relevant, and delineate the time regime over which it may be observed.
In this work it is shown how the immersed boundary method of (Peskin2002) for modeling flexible structures immersed in a fluid can be extended to include thermal fluctuations. A stochastic numerical method is proposed which deals with stiffness in the system of equations by handling systematically the statistical contributions of the fastest dynamics of the fluid and immersed structures over long time steps. An important feature of the numerical method is that time steps can be taken in which the degrees of freedom of the fluid are completely underresolved, partially resolved, or fully resolved while retaining a good level of accuracy. Error estimates in each of these regimes are given for the method. A number of theoretical and numerical checks are furthermore performed to assess its physical fidelity. For a conservative force, the method is found to simulate particles with the correct Boltzmann equilibrium statistics. It is shown in three dimensions that the diffusion of immersed particles simulated with the method has the correct scaling in the physical parameters. The method is also shown to reproduce a well-known hydrodynamic effect of a Brownian particle in which the velocity autocorrelation function exhibits an algebraic tau^(-3/2) decay for long times. A few preliminary results are presented for more complex systems which demonstrate some potential application areas of the method.
We simulate a relaxation process of non-brownian particles in a sheared viscous medium; the small shear strain is initially applied to a system, which then undergoes relaxation. The relaxation time and the correlation length are estimated as functions of density, which algebraically diverge at the jamming density. This implies that the relaxation time can be scaled by the correlation length using the dynamic critical exponent, which is estimated as 4.6(2). It is also found that shear stress undergoes power-law decay at the jamming density, which is reminiscent of critical slowing down.
Using numerical simulations, we characterized the behavior of an elastic membrane immersed in an active fluid. Our findings reveal a nontrivial folding and re-expansion of the membrane that is controlled by the interplay of its resistance to bending and the self-propulsion strength of the active components in solution. We show how flexible membranes tend to collapse into multi-folded states, whereas stiff membranes oscillates between an extended configuration and a singly folded state. This study provides a simple example of how to exploit the random motion of active particles to perform mechanical work at the micro-scale.
We present a statistical field theory to describe large length scale effects induced by solutes in a cold and otherwise placid liquid. The theory divides space into a cubic grid of cells. The side length of each cell is of the order of the bulk correlation length of the bulk liquid. Large length scale states of the cells are specified with an Ising variable. Finer length scale effects are described with a Gaussian field, with mean and variance affected by both the large length scale field and by the constraints imposed by solutes. In the absence of solutes and corresponding constraints, integration over the Gaussian field yields an effective lattice gas Hamiltonian for the large length scale field. In the presence of solutes, the integration adds additional terms to this Hamiltonian. We identify these terms analytically. They can provoke large length scale effects, such as the formation of interfaces and depletion layers. We apply our theory to compute the reversible work to form a bubble in liquid water, as a function of the bubble radius. Comparison with molecular simulation results for the same function indicates that the theory is reasonably accurate. Importantly, simulating the large length scale field involves binary arithmetic only. It thus provides a computationally convenient scheme to incorporate explicit solvent dynamics and structure in simulation studies of large molecular assemblies.
Most methods for modelling dynamics posit just two time scales: a fast and a slow scale. But many applications, including many in continuum mechanics, possess a wide variety of space-time scales; often they possess a continuum of space-time scales. I discuss an approach to modelling the discretised dynamics of advection and diffusion with rigorous support for changing the resolved spatial grid scale by just a factor of two. The mapping of dynamics from a finer grid to a coarser grid is then iterated to generate a hierarchy of models across a wide range of space-time scales, all with rigorous support across the whole hierarchy. This approach empowers us with great flexibility in modelling complex dynamics over multiple scales.