Do you want to publish a course? Click here

Superconductivity in pressurized CeRhGe3 and related non-centrosymmetric compounds

318   0   0.0 ( 0 )
 Added by Liling Sun
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the discovery of superconductivity in pressurized CeRhGe3, until now the only remaining non-superconducting member of the isostructural family of non-centrosymmetric heavy-fermion compounds CeTX3 (T = Co, Rh, Ir and X = Si, Ge). Superconductivity appears in CeRhGe3 at a pressure of 19.6 GPa and the transition temperature Tc reaches a maximum value of 1.3 K at 21.5 GPa. This finding provides an opportunity to establish systematic correlations between superconductivity and materials properties within this family. Though ambient-pressure unit-cell volumes and critical pressures for superconductivity vary substantially across the series, all family members reach a maximum Tcmax at a common critical cell volume Vcrit, and Tcmax at Vcrit increases with increasing spin-orbit coupling strength of the d-electrons. These correlations show that substantial Kondo hybridization and spin-orbit coupling favor superconductivity in this family, the latter reflecting the role of broken centro-symmetry.

rate research

Read More

Unconventional superconductivity frequently emerges as the transition temperature of a magnetic phase, typically antiferromagnetic, is suppressed continuously toward zero temperature. Here, we report contrary behavior in pressurized CeRhGe3, a non-centrosymmetric heavy fermion compound. We find that its pressure-tuned antiferromagnetic transition temperature (TN) appears to avoid a continuous decrease to zero temperature by terminating abruptly above a dome of pressure-induced superconductivity. Near 21.5 GPa, evidence for TN suddenly vanishes, the electrical resistance becomes linear in temperature and the superconducting transition reaches a maximum. In light of X-ray absorption spectroscopy measurements, these characteristics appear to be related to a pressured-induced Ce valence instability, which reveals as a sharp increase in the rate of change of Ce valence with applied pressure.
128 - S. Sharma , Arushi , K. Motla 2020
We present a comprehensive study on superconducting properties of Re$_7$B$_3$ and Re$_3$B through specific heat, magnetic susceptibility, resistivity, and transverse and zero-field muon spin rotation/relaxation ($mu$SR) experiments on polycrystalline samples. Re$_7$B$_3$ (T$_C$ = 3.2~K) is a non-centrosymmetric type-II ($kappa$ $approx$ 9.27) superconductor in the weak coupling ($lambda_{e-ph}$ = 0.54) regime. On the other hand, Re$_3$B (T$_C$ = 5.19~K) is a centrosymmetric type-II ($kappa$ $approx$ 34.55) superconductor in the moderate coupling ($lambda_{e-ph}$ = 0.64) regime. Our transverse-field $mu$SR measurements show evidence for isotropically gapped BCS type superconductivity with normalized gap ($Delta_0/k_BT_C$) values of 1.69 (Re$_7$B$_3$) and 1.75 (Re$_3$B).
The out-of-plane intercalate phonons of superconducting YbC6 have been measured with inelastic x-ray scattering. Model fits to this data, and previously measured out-of-plane intercalate phonons in graphite intercalation compounds (GICs), reveal surprising trends with the superconducting transition temperature. These trends suggest that superconducting GICs should be viewed as electron-doped graphite.
In the recently discovered antiperovskite phosphide (Ca,Sr)Pd$_3$P, centrosymmetric (CS) and non-centrosymmetric (NCS) superconducting phases appear depending on the Sr concentration, and their transition temperatures ($T_mathrm{c}$) differ by as much as one order of magnitude. In this study, we investigated the superconducting properties and electronic band structures of CS orthorhombic (CSo) (Ca$_{0.6}$Sr$_{0.4}$)Pd$_3$P ($T_mathrm{c}$ = 3.5 K) and NCS tetragonal (NCSt) (Ca$_{0.25}$Sr$_{0.75}$)Pd$_3$P ($T_mathrm{c}$ = 0.32 K) samples with a focus on explaining their large $T_mathrm{c}$ difference. Specific heat measurements indicated that CSo (Ca$_{0.6}$Sr$_{0.4}$)Pd$_3$P was an s-wave superconductor in a moderate-coupling regime with a 2$Delta$$_0$/k$_B$$T_mathrm{c}$ value of 4.0. Low-lying phonons leading to the strong coupling in the structurally analogous SrPt$_3$P were unlikely to be present in CSo (Ca$_{0.6}$Sr$_{0.4}$)Pd$_3$P. Given that CSo (Ca$_{0.6}$Sr$_{0.4}$)Pd$_3$P and NCSt (Ca$_{0.25}$Sr$_{0.75}$)Pd$_3$P exhibited similar Debye temperatures ($Theta$$_D$) of approximately 200 K, the large $T_mathrm{c}$ difference could not be attributed to $Theta$$_D$.$T_mathrm{c}$ of each phase was accurately reproduced based on the Bardeen-Cooper-Schrieffer (BCS) theory using experimental data and the density of states of the Fermi level $N$(0) calculated from their band structures. We concluded that the considerable suppression of $T_mathrm{c}$ in NCSt (Ca$_{0.25}$Sr$_{0.75}$)Pd$_3$P can be primarily attributed to the decrease in $N$(0) associated with the structural phase transition without considering the lack of inversion symmetry.
Superconductivity and magnetism in the non-centrosymmetric heavy fermion compound CePt$_3$Si and related materials are theoretically investigated. Based on the randam phase approximation (RPA) analysis for the extended Hubbard model we describe the helical spin fluctuation induced by the Rashba-type anti-symmetric spin-orbit coupling and identify the two stable superconducting phases with either dominantly p-wave ($s$ + $P$-wave) or d-wave ($p$ + $D$ + $f$-wave) symmetry. The influcnce of the coexistent anti-ferromagnetic order is investigated in both states. The SC order parameter, quasiparticle density of state, NMR $1/T_{1}T$, specific heat, anisotropy of $H_{rm c2}$ and possible multiple phase transitions are discussed in details. The comparison with experimental results indicates that the $s$ + $P$-wave superconducting state is likely realized in CePt$_3$Si.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا