No Arabic abstract
This paper introduces a novel oscillator that combines the tunability of spin Hall-driven nano oscillators with the high quality factor (Q) of high overtone bulk acoustic wave resonators (HBAR), integrating both reference and tunable oscillators on the same chip with CMOS. In such magneto acoustic spin Hall (MASH) oscillators, voltage oscillations across the magnetic tunnel junction (MTJ) that arise from a spin-orbit torque (SOT) are shaped by the transmission response of the HBAR that acts as a multiple peak-bandpass filter and a delay element due to its large time constant, providing delayed feedback. The filtered voltage oscillations can be fed back to the MTJ via a) strain, b) current, or c) magnetic field. We develop a SPICE-based circuit model by combining experimentally benchmarked models including the stochastic Landau-Lifshitz-Gilbert (sLLG) equation for magnetization dynamics and the Butterworth Van Dyke (BVD) circuit for the HBAR. Using the self-consistent model, we project up to $sim$ 50X enhancement in the oscillator linewidth with Q reaching up to 52825 at 3 GHz, while preserving the tunability by locking the STNO to the nearest high Q peak of the HBAR. We expect that our results will inspire MEMS-based solutions to spintronic devices by combining attractive features of both fields for a variety of applications.
Auto-oscillations of magnetization driven by direct spin current have been previously observed in multiple quasi-zero-dimensional (0D) ferromagnetic systems such as nanomagnets and nanocontacts. Recently, it was shown that pure spin Hall current can excite coherent auto-oscillatory dynamics in quasi-one-dimensional (1D) ferromagnetic nanowires but not in quasi-two-dimensional (2D) ferromagnetic films. Here we study the 1D to 2D dimensional crossover of current-driven magnetization dynamics in wire-based Pt/$mathrm{Ni}_{80}mathrm{Fe}_{20}$ bilayer spin Hall oscillators via varying the wire width. We find that increasing the wire width results in an increase of the number of excited auto-oscillatory modes accompanied by a decrease of the amplitude and coherence of each mode. We also observe a crossover from a hard to a soft onset of the auto-oscillations with increasing the wire width. The amplitude of auto-oscillations rapidly decreases with increasing temperature suggesting that interactions of the phase-coherent auto-oscillatory modes with incoherent thermal magnons plays an important role in suppression of the auto-oscillatory dynamics. Our measurements set the upper limit on the dimensions of an individual spin Hall oscillator and elucidate the mechanisms leading to suppression of coherent auto-oscillations with increasing oscillator size.
In the last decade, two revolutionary concepts in nano magnetism emerged from research for storage technologies and advanced information processing. The first suggests the use of magnetic domain walls (DWs) in ferromagnetic nanowires to permanently store information in DW racetrack memories. The second proposes a hardware realisation of neuromorphic computing in nanomagnets using nonlinear magnetic oscillations in the GHz range. Both ideas originate from the transfer of angular momentum from conduction electrons to localised spins in ferromagnets, either to push data encoded in DWs along nanowires or to sustain magnetic oscillations in artificial neurones. Even though both concepts share a common ground, they live on very different time scales which rendered them incompatible so far. Here, we bridge both ideas by demonstrating the excitation of magnetic auto-oscillations inside nano-scale DWs using pure spin currents.
We have proposed a method to synchronize multiple spin-transfer torque oscillators based on spin pumping, inverse spin Hall, and spin Hall effects. The proposed oscillator system consists of a series of nano-magnets in junction with a normal metal with high spin-orbit coupling, and an accumulative feedback loop. We conduct simulations to demonstrate the effect of modulated charge currents in the normal metal due to spin pumping from each nano-magnet. We show that the interplay between the spin Hall effect and inverse spin Hall effect results in synchronization of the nano-magnets.
We report on the observation of the acoustic spin Hall effect that facilitates lattice motion induced spin current via spin orbit interaction (SOI). Under excitation of surface acoustic wave (SAW), we find a spin current flows orthogonal to the propagation direction of a surface acoustic wave (SAW) in non-magnetic metals. The acoustic spin Hall effect manifests itself in a field-dependent acoustic voltage in non-magnetic metal (NM)/ferromagnetic metal (FM) bilayers. The acoustic voltage takes a maximum when the NM layer thickness is close to its spin diffusion length, vanishes for NM layers with weak SOI and increases linearly with the SAW frequency. To account for these results, we find the spin current must scale with the SOI and the time derivative of the lattice displacement. Such form of spin current can be derived from a Berry electric field associated with time varying Berry curvature and/or an unconventional spin-lattice interaction mediated by SOI. These results, which imply the strong coupling of electron spins with rotating lattices via the SOI, show the potential of lattice dynamics to supply spin current in strong spin orbit metals.
We investigate magnetization dynamics in a spin-Hall oscillator using a direct current measurement as well as conventional microwave spectrum analysis. When the current applies an anti-damping spin-transfer torque, we observe a change in resistance which we ascribe to the excitation of incoherent exchange magnons. A simple model is developed based on the reduction of the effective saturation magnetization, quantitatively explaining the data. The observed phenomena highlight the importance of exchange magnons on the operation of spin-Hall oscillators.