Do you want to publish a course? Click here

On age of 6070 Rheinland and 54827 (2001 NQ8) asteroid pair

63   0   0.0 ( 0 )
 Added by Alex Rosaev
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper we present results of our studying of famous very young pair of asteroids 6070 Rheinland and 54827 (2001 NQ8). We have done numeric integration of orbits of pair with only planet perturbations and include Ceres and Vesta effect. We have confirmed results of previous studying, obtained with different integrators. And we confirm significant effect of Ceres and Vesta perturbation on dynamic of this pair. We find that effect of other massive asteroids is insignificant. According our results, more probable age of 6070 Rheinland and 54827 (2001 NQ8) pair is 16.2 kyrs. Our value of age is very close to most recent age determination by Vokrouhlicky et al [12], obtained with different method. After the compare our results, we can conclude, that non-gravitational forces are small and large number of clones is not necessary in studying of this pair. As an additional way of studying of close orbits dynamics, we calculate relative velocity in pair during numeric integration. Normal component of velocity show a very good convergence at epoch of closest encounter in pair.



rate research

Read More

The (153591) 2001 SN263 asteroid system, target of the first Brazilian interplanetary space mission, is one of the known three triple systems within the population of NEAs. One of the mission objectives is to collect data about the formation of this system. The analysis of these data will help in the investigation of the physical and dynamical structures of the components (Alpha, Beta and Gamma) of this system, in order to find vestiges related to its origin. In this work, we assume the irregular shape of the 2001 SN263 system components as uniform density polyhedra and computationally investigate the gravitational field generated by these bodies. The goal is to explore the dynamical characteristics of the surface and environment around each component. Then, taking into account the rotational speed, we analyze their topographic features through the quantities geometric altitude, tilt, geopotential, slope, surface accelerations, among others. Additionally, the investigation of the environment around the bodies made it possible to construct zero-velocity curves, which delimit the location of equilibrium points. The Alpha component has a peculiar number of 12 equilibrium points, all of them located very close to its surface. In the cases of Beta and Gamma, we found four equilibrium points not so close to their surfaces. Then, performing numerical experiments around their equilibrium points, we identified the location and size of just one stable region, which is associated with an equilibrium point around Beta. Finally, we integrated a spherical cloud of particles around Alpha and identified the location on the surface of Alpha were the particles have fallen.
At a mean diameter of ~650 m, the near-Earth asteroid (455213) 2001 OE84 (OE84 for short) has a rapid rotation period of 0.486542+-0.000002 hours, which is uncommon for asteroids larger than ~200 m. We revisited OE84 14 years after it was first, and last, observed by Pravec et al. (2002) in order to measure again its spin rate and to search for changes. We have confirmed the rapid rotation and, by fitting the photometric data from 2001 and 2016 using the lightcurve inversion technique, we determined a retrograde sense of rotation, with the spin axis close to the ecliptic south pole; an oblate shape model of a/b=1.32+-0.04 and b/c=1.8+-0.2; and no change in spin rate between 2001 and 2016. Using these parameters we constrained the bodys internal strength, and found that current estimations of asteroid cohesion (up to ~80 Pa) are insufficient to maintain an intact rubble pile at the measured spin rate of OE84. Therefore, we argue that a monolithic asteroid, that can rotate at the rate of OE84 without shedding mass and without slowing down its spin rate, is the most plausible for OE84, and we give constraints on its age, since the time it was liberated from its parent body, between 2-10 million years.
In this work we have estimated 10 collisional ages of 9 families for which for different reasons our previous attempts failed. In general, these are difficult cases that required dedicated effort, such as a new family classifications for asteroids in mean motion resonances, as well as a revision of the classification inside the $3/2$ resonance. Of the families locked in mean motion resonances, we succeeded in determining ages of the families of (1911) Schubart and of the super-Hilda family, assuming this is actually a severely eroded original family of (153) Hilda. In the Trojan region we found families with almost no Yarkovsky evolution, for which we could compute only physically implausible ages. Hence, we interpreted their modest dispersions of proper eccentricities and inclinations as implying that the Trojan asteroid families are fossil families, frozen at their proper elements determined by the original ejection velocity field. We have found a new family, among the Griquas locked in the 2/1 resonance with Jupiter: (11097) 1994 UD1. We have estimated the ages of 6 families affected by secular resonances: families of (5) Astraea, (25) Phocaea, (283) Emma, (363) Padua, (686) Gersuind, and (945) Barcelona. By using a numerical calibration method, we have shown that the secular resonances do not affect significanly the secular change of proper a. For the family of (145) Adeona we could estimate the age only after removal of a number of assumed interlopers. With the present paper we have concluded the series dedicated to the determination of asteroid ages with a uniform method. We computed the ages for a total of 57 families with $>100$ members. There remain families too small at present to provide reliable estimates, as well as some complex families (221, 135, 298) which may have more ages than we could currently estimate.
In order to search for evidence of hydration on M-type asteroid (16) Psyche, we observed this object in the 3 micron spectral region using the long-wavelength cross-dispersed (LXD: 1.9-4.2 micron) mode of the SpeX spectrograph/imager at the NASA Infrared Telescope Facility (IRTF). Our observations show that Psyche exhibits a 3 micron absorption feature, attributed to water or hydroxyl. The 3 micron absorption feature is consistent with the hydration features found on the surfaces of water-rich asteroids, attributed to OH- and/or H2O-bearing phases (phyllosilicates). The detection of a 3 micron hydration absorption band on Psyche suggests that this asteroid may not be metallic core, or it could be a metallic core that has been impacted by carbonaceous material over the past 4.5 Gyr. Our results also indicate rotational spectral variations, which we suggest reflect heterogeneity in the metal/silicate ratio on the surface of Psyche.
he triple asteroidal system (87) Sylvia is composed of a 280-km primary and two small moonlets named Romulus and Remus (Marchis et al 2005). Sylvia is located in the main asteroid belt. The satellites are in nearly equatorial circular orbits around the primary. In the present work we study the stability of the satellites Romulus and Remus, in order to identify the effects and the contribution of each perturber. The results from the 3-body problem, Sylvia-Romulus-Remus, show no significant variation of their orbital elements. However, the inclinations of the satellites present a long period evolution, when the Sun is included in the system. Such amplitude is amplified when Jupiter is included. An analysis of these results show that Romulus and Remus are librating in a secular resonance and their longitude of the nodes are locked to each other. The satellites get caught in an evection resonance with Jupiter. However, the orbital evolutions of the satellites became completely stable when the oblateness of Sylvia is included in the simulations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا