No Arabic abstract
The resonant eigenmodes of a nitrogen-implanted iron {alpha}-FeN characterized by weak stripe domains are investigated by Brillouin light scattering and broadband ferromagnetic resonance experiments, assisted by micromagnetic simulations. The spectrum of the dynamic eigenmodes in the presence of the weak stripes is very rich and two different families of modes can be selectively detected using different techniques or different experimental configurations. Attention is paid to the evolution of the mode frequencies and spatial profiles under the application of an external magnetic field, of variable intensity, in the direction parallel or transverse to the stripes. The different evolution of the modes with the external magnetic field is accompanied by a distinctive spatial localization in specific regions, such as the closure domains at the surface of the stripes and the bulk domains localized in the inner part of the stripes. The complementarity of BLS and FMR techniques, based on different selection rules, is found to be a fruitful tool for the study of the wealth of localized mag-netic excitations generally found in nanostructures.
Domain walls in magnetic multilayered systems can exhibit a very complex and fascinating behavior. For example, the magnetization of thin films of hard magnetic materials is in general perpendicular to the thin-film plane, thanks to the strong out-of-plane anisotropy, but its direction changes periodically, forming an alternating spin-up and spin-down stripe pattern. The latter is stabilized by the competition between the ferromagnetic coupling and dipole-dipole interactions, and disappears when a moderate in-plane magnetic field is applied. It has been suggested that such a behavior may be understood in terms of a self-induced stripe glassiness. In this paper we show that such a scenario is compatible with the experimental findings. The strong out-of-plane magnetic anisotropy of the film is found to be beneficial for the formation of both the stripe-ordered and glassy phases. At zero magnetic field the system can form a glass only in a narrow interval of fairly large temperatures. An in-plane magnetic field, however, shifts the glass transition towards lower temperatures, therefore enabling it at or below room temperature. In good qualitative agreement with the experimental findings, we show that a moderate in-plane magnetic field of the order of $30~{rm mT}$ can lead to the formation of defects in the stripe pattern, which sets the onset of the glass transition.
We report on the delithiation of LiCoO2 thin films using oxalic acid (C2H2O4) with the goal of understanding the structural degradation of an insertion oxide associated with Li chemical extraction. Using a multi-technique approach that includes synchrotron radiation x-ray diffraction, scanning electron microscopy, micro Raman spectroscopy, photoelectron spectroscopy and conductive atomic force microscopy we reveal the balance between selective Li extraction and structural damage. We identify three different delithiation regimes, related to surface processes, bulk delithiation and damage generation. We find that only a fraction of the grains is affected by the delithiation process, which may create local inhomogeneities. The chemical route to Li extraction provides additional opportunities to investigate delithiation while avoiding the complications associated with electrolyte breakdown and could simplify in situ measurements.
Recently, it has been theoretically predicted that Cd3As2 is a three dimensional Dirac material, a new topological phase discovered after topological insulators, which exhibits a linear energy dispersion in the bulk with massless Dirac fermions. Here, we report on the low-temperature magnetoresistance measurements on a ~50nm-thick Cd3As2 film. The weak antilocalization under perpendicular magnetic field is discussed based on the two-dimensional Hikami-Larkin-Nagaoka (HLN) theory. The electron-electron interaction is addressed as the source of the dephasing based on the temperature-dependent scaling behavior. The weak antilocalization can be also observed while the magnetic field is parallel to the electric field due to the strong interaction between the different conductance channels in this quasi-two-dimensional film.
The knowledge of how the magnetization looks inside a ferromagnet is often hindered by the limitations of the available experimental methods that are sensitive only to the surface regions or limited in spatial resolution. We report the 3D tomographic reconstruction of the magnetization within a ferromagnetic film of 240 nm in thickness using soft X ray microscopy and magnetic dichroism. The film has periodic magnetic domains forming stripes and closure domains found to be shifted from the stripe array by 1/4 of the period. In addition, the bifurcations of the stripes, which act as inversion nuclei of the magnetization, evidence in 3D meron singularities and Bloch points at the interior of the film. This novel method can be easily extended to magnetic stacks in spintronics applications and other singularities in films.
We have investigated the spin wave dynamics of Permalloy (Py) thin films with and without a Ta capping layer for varying Py thickness (15 nm, 20 nm and 30 nm) using all optical time-resolved magneto-optical Kerr effect measurements. XPS measurements confirm the oxidation of the originally-prepared samples and also that the removal of the Ta capping layer is achievable by a few sputtering cycles. The magnetic field strength dependencies of the spin wave modes with the variation of the Py film thickness for the samples are studied. We observe that the presence of the Ta capping layer reduces the precessional frequencies of the samples while the samples without a Ta capping layer enhance the role of Py thickness. We also observe that the decay time of spin waves is highly dependent on the top layer of the samples. The decay time increases with increasing Py thicknesses for Ta/Py/Ta samples implying that the enhancement of decay time is caused by the Ta/Py/Ta interfaces. Whereas, for Ta/Py samples the decay time decreases with increasing Py thickness. The results of this work extend the knowledge on the magnetization dynamics of Py thin films giving information on how to resume and even enhance the spin mobility after a deleterious oxidation process. This can open new scenarios on the building process and on the maintenance of fast magnetic switching devices.