Do you want to publish a course? Click here

Additive continuity of the renormalized volume under geometric limits

73   0   0.0 ( 0 )
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

We study the infimum of the renormalized volume for convex-cocompact hyperbolic manifolds, as well as describing how a sequence converging to such values behaves. In particular, we show that the renormalized volume is continuous under the appropriate notion of limit. This result generalizes previous work in the subject.



rate research

Read More

We extend the concept of renormalized volume for geometrically finite hyperbolic $3$-manifolds, and show that is continuous for geometrically convergent sequences of hyperbolic structures over an acylindrical 3-manifold $M$ with geometrically finite limit. This allows us to show that the renormalized volume attains its minimum (in terms of the conformal class at $partial M = S$) at the geodesic class, the conformal class for which the boundary of the convex core is totally geodesic.
In this article we show that for any given Riemann surface $Sigma$ of genus $g$, we can bound (from above) the renormalized volume of a (hyperbolic) Schottky group with boundary at infinity conformal to $Sigma$ in terms of the genus and the combined extremal lengths on $Sigma$ of $(g-1)$ disjoint, non-homotopic, simple closed compressible curves. This result is used to partially answer a question posed by Maldacena about comparing renormalized volumes of Schottky and Fuchsian manifolds with the same conformal boundary.
We reinterpret the renormalized volume as the asymptotic difference of the isoperimetric profiles for convex co-compact hyperbolic 3-manifolds. By similar techniques we also prove a sharp Minkowski inequality for horospherically convex sets in $mathbb{H}^3$. Finally, we include the classification of stable constant mean curvature surfaces in regions bounded by two geodesic planes in $mathbb{H}^3$ or in cyclic quotients of $mathbb{H}^3$.
We study the critical points of the renormalized volume for acylindrical geometrically finite hyperbolic 3-manifolds that include rank-1 cusps, and show that the renormalized volume is locally convex around these critical points. We give a modified definition of the renormalized volume that is additive under gluing, and study some local properties.
Given a geodesic inside a simply-connected, complete, non-positively curved Riemannian (NPCR) manifold M, we get an associated geodesic inside the asymptotic cone Cone(M). Under mild hypotheses, we show that if the latter is contained inside a bi-Lipschitz flat, then the original geodesic supports a non-trivial, orthogonal, parallel Jacobi field. As applications we obtain (1) constraints on the behavior of quasi-isometries between complete, simply connected, NPCR manifolds, and (2) constraints on the NPCR metrics supported by certain manifolds, and (3) a correspondence between metric splittings of complete, simply connected NPCR manifolds, and metric splittings of its asymptotic cones. Furthermore, combining our results with the Ballmann-Burns-Spatzier rigidity theorem and the classic Mostow rigidity, we also obtain (4) a new proof of Gromovs rigidity theorem for higher rank locally symmetric spaces.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا