Do you want to publish a course? Click here

Microscopic study of induced fission dynamics of $^{226}$Th with covariant energy density functionals

214   0   0.0 ( 0 )
 Added by Zhipan Li
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

Static and dynamic aspects of the fission process of $^{226}$Th are analyzed in a self-consistent framework based on relativistic energy density functionals. Constrained relativistic mean-field (RMF) calculations in the collective space of axially symmetric quadrupole and octupole deformations, based on the energy density functional PC-PK1 and a $delta$-force pairing, are performed to determine the potential energy surface of the fissioning nucleus, the scission line, the single-nucleon wave functions, energies and occupation probabilities, as functions of deformation parameters. Induced fission dynamics is described using the time-dependent generator coordinate method in the Gaussian overlap approximation. A collective Schrodinger equation, determined entirely by the microscopic single-nucleon degrees of freedom, propagates adiabatically in time the initial wave packet built by boosting the ground-state solution of the collective Hamiltonian for $^{226}$Th. The position of the scission line and the microscopic input for the collective Hamiltonian are analyzed as functions of the strength of the pairing interaction. The effect of static pairing correlations on the pre-neutron emission charge yields and total kinetic energy of fission fragments is examined in comparison with available data, and the distribution of fission fragments is analyzed for different values of the initial excitation energy.



rate research

Read More

The constrained Hartree-Fock-Bogoliubov method is used with the Gogny interaction D1S to calculate potential energy surfaces of fissioning nuclei ${}^{226}$Th and ${}^{256,258,260}$Fm up to very large deformations. The constraints employed are the mass quadrupole and octupole moments. In this subspace of collective coordinates, many scission configurations are identified ranging from symmetric to highly asymmetric fragmentations. Corresponding fragment properties at scission are derived yielding fragment deformations, deformation energies, energy partitioning, neutron binding energies at scission, neutron multiplicities, charge polarization and total fragment kinetic energies.
Recent progresses in the description of the latter stage of nuclear fission are reported. Dynamical effects during the descent of the potential towards scission and in the formation of the fission fragments are studied with the time-dependent Hartree-Fock approach with dynamical pairing correlations at the BCS level. In particular, this approach is used to compute the final kinetic energy of the fission fragments. Comparison with experimental data on the fission of 258Fm are made.
207 - S. Quan , Q. Chen , Z. P. Li 2017
Coexistence of different geometric shapes at low energies presents a universal structure phenomenon that occurs over the entire chart of nuclides. Studies of the shape coexistence are important for understanding the microscopic origin of collectivity and modifications of shell structure in exotic nuclei far from stability. The aim of this work is to provide a systematic analysis of characteristic signatures of coexisting nuclear shapes in different mass regions, using a global self-consistent theoretical method based on universal energy density functionals and the quadrupole collective model. The low-energy excitation spectrum and quadrupole shape invariants of the two lowest $0^{+}$ states of even-even nuclei are obtained as solutions of a five-dimensional collective Hamiltonian (5DCH) model, with parameters determined by constrained self-consistent mean-field calculations based on the relativistic energy density functional PC-PK1, and a finite-range pairing interaction. The theoretical excitation energies of the states: $2^+_1$, $4^+_1$, $0^+_2$, $2^+_2$, $2^+_3$, as well as the $B(E2; 0^+_1to 2^+_1)$ values, are in very good agreement with the corresponding experimental values for 621 even-even nuclei. Quadrupole shape invariants have been implemented to investigate shape coexistence, and the distribution of possible shape-coexisting nuclei is consistent with results obtained in recent theoretical studies and available data. The present analysis has shown that, when based on a universal and consistent microscopic framework of nuclear density functionals, shape invariants provide distinct indicators and reliable predictions for the occurrence of low-energy coexisting shapes. This method is particularly useful for studies of shape coexistence in regions far from stability where few data are available.
94 - A.V.Afanasjev 2015
The assessment of the global performance of the state-of-the-art covariant energy density functionals and related theoretical uncertainties in the description of ground state observables has recently been performed. Based on these results, the correlations between global description of binding energies and nuclear matter properties of covariant energy density functionals have been studied in this contribution.
Nuclear density functional theory is the prevalent theoretical framework for accurately describing nuclear properties at the scale of the entire chart of nuclides. Given an energy functional and a many-body scheme (e.g., single- or multireference level), the predictive power of the theory depends strongly on how the parameters of the energy functionals have been calibrated with experimental data. Expanded algorithms and computing power have enabled recent optimization protocols to include data in deformed nuclei in order to optimize the coupling constants of the energy functional. The primary motivation of this work is to test the robustness of such protocols with respect to some of the technical and numerical details of the underlying calculations, especially when the calibration explores a large parameter space. To this end, we quantify the effect of these uncertainties on both the optimization and statistical emulation of composite objective functions. We also emphasize that Bayesian calibration can provide better estimates of the theoretical errors used to define objective functions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا