Do you want to publish a course? Click here

Bivariate Domination Polynomial

154   0   0.0 ( 0 )
 Added by James Preen
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

We introduce a new bivariate polynomial ${displaystyle J(G; x,y):=sumlimits_{W in V(G)} x^{|W|}y^{|N(W)|}}$ which contains the standard domination polynomial of the graph $G$ in two different ways. We build methods for efficient calculation of this polynomial and prove that there are still some families of graphs which have the same bivariate polynomial.



rate research

Read More

The domination polynomial D(G,x) of a graph G is the generating function of its dominating sets. We prove that D(G,x) satisfies a wide range of reduction formulas. We show linear recurrence relations for D(G,x) for arbitrary graphs and for various special cases. We give splitting formulas for D(G,x) based on articulation vertices, and more generally, on splitting sets of vertices.
101 - Peter Ulrickson 2021
The well-known notion of domination in a graph abstracts the idea of protecting locations with guards. This paper introduces a new graph invariant, the autonomous domination number, which abstracts the idea of defending a collection of locations with autonomous agents following a simple protocol to coordinate their defense using only local information.
We consider the problem of secure distributed matrix multiplication. Coded computation has been shown to be an effective solution in distributed matrix multiplication, both providing privacy against workers and boosting the computation speed by efficiently mitigating stragglers. In this work, we present a non-direct secure extension of the recently introduced bivariate polynomial codes. Bivariate polynomial codes have been shown to be able to further speed up distributed matrix multiplication by exploiting the partial work done by the stragglers rather than completely ignoring them while reducing the upload communication cost and/or the workers storages capacity needs. We show that, especially for upload communication or storage constrained settings, the proposed approach reduces the average computation time of secure distributed matrix multiplication compared to its competitors in the literature.
The domination polynomials of binary graph operations, aside from union, join and corona, have not been widely studied. We compute and prove recurrence formulae and properties of the domination polynomials of families of graphs obtained by various products, ranging from explicit formulae and recurrences for specific families to more general results. As an application, we show the domination polynomial is computationally hard to evaluate.
In combinatorics, a latin square is a $ntimes n$ matrix filled with n different symbols, each occurring exactly once in each row and exactly once in each column. Associated to each latin square, we can define a simple graph called a latin square graph. In this article, we compute lower and upper bounds for the domination number and the k-tuple total domination numbers of such graphs. Moreover, we describe a formula for the 2-tuple total domination number.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا