No Arabic abstract
The scattering of a wave obeying Helmholtz equation by an elliptic obstacle can be described exactly using series of Mathieu functions. This situation is relevant in optics, quantum mechanics and fluid dynamics. We focus on the case when the wavelength is comparable to the obstacle size, when the most standard approximations fail. The approximations of the radial (or modified) Mathieu functions using WKB method are shown to be especially efficient, in order to precisely evaluate series of such functions. It is illustrated with the numerical computation of the Green function when the wave is scattered by a single slit or a strip (ribbon).
In electromagnetism, acoustics, and quantum mechanics, scattering problems can routinely be solved numerically by virtue of perfectly matched layers (PMLs) at simulation domain boundaries. Unfortunately, the same has not been possible for general elastodynamic wave problems in continuum mechanics. In this paper, we introduce a corresponding scattered-field formulation for the Navier equation. We derive PMLs based on complex-valued coordinate transformations leading to Cosserat elasticity-tensor distributions not obeying the minor symmetries. These layers are shown to work in two dimensions, for all polarizations, and all directions. By adaptative choice of the decay length, the deep subwavelength PMLs can be used all the way to the quasi-static regime. As demanding examples, we study the effectiveness of cylindrical elastodynamic cloaks of the Cosserat type and approximations thereof.
As a model for the semiclassical analysis of quantum-mechanical systems with both potentials and boundary conditions, we construct the WKB propagator for a linear potential sloping away from an impenetrable boundary. First, we find all classical paths from point $y$ to point $x$ in time $t$ and calculate the corresponding action and amplitude functions. A large part of space-time turns out to be classically inaccessible, and the boundary of this region is a caustic of an unusual type, where the amplitude vanishes instead of diverging. We show that this curve is the limit of caustics in the usual sense when the reflecting boundary is approximated by steeply rising smooth potentials. Then, to improve the WKB approximation we construct the propagator for initial data in momentum space; this requires classifying the interesting variety of classical paths with initial momentum $p$ arriving at $x$ after time $t$. The two approximate propagators are compared by applying them to Gaussian initial packets by numerical integration; the results show physically expected behavior, with advantages to the momentum-based propagator in the classically forbidden regime (large $t$).
We define a new divergence of von Neumann algebras using a variational expression that is similar in nature to Kosakis formula for the relative entropy. Our divergence satisfies the usual desirable properties, upper bounds the sandwiched Renyi entropy and reduces to the fidelity in a limit. As an illustration, we use the formula in quantum field theory to compute our divergence between the vacuum in a bipartite system and an orbifolded -- in the sense of conditional expectation -- system in terms of the Jones index. We take the opportunity to point out entropic certainty relation for arbitrary von Neumann subalgebras of a factor related to the relative entropy. This certainty relation has an equivalent formulation in terms of error correcting codes.
A prepotential approach to constructing the quantum systems with dynamical symmetry is proposed. As applications, we derive generalizations of the hydrogen atom and harmonic oscillator, which can be regarded as the systems with position-dependent mass. They have the symmetries which are similar to the corresponding ones, and can be solved by using the algebraic method.
We consider the spectrum of the almost Mathieu operator $H_alpha$ with frequency $alpha$ and in the case of the critical coupling. Let an irrational $alpha$ be such that $|alpha-p_n/q_n|<c q_n^{-varkappa}$, where $p_n/q_n$, $n=1,2,dots$ are the convergents to $alpha$, and $c$, $varkappa$ are positive absolute constants, $varkappa<56$. Assuming certain conditions on the parity of the coefficients of the continued fraction of $alpha$, we show that the central gaps of $H_{p_n/q_n}$, $n=1,2,dots$, are inherited as spectral gaps of $H_alpha$ of length at least $cq_n^{-varkappa/2}$, $c>0$.