Do you want to publish a course? Click here

On the number of proper paths between vertices in edge-colored hypercubes

76   0   0.0 ( 0 )
 Added by Yang Weihua
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

Given an integer $1leq j <n$, define the $(j)$-coloring of a $n$-dimensional hypercube $H_{n}$ to be the $2$-coloring of the edges of $H_{n}$ in which all edges in dimension $i$, $1leq i leq j$, have color $1$ and all other edges have color $2$. Cheng et al. [Proper distance in edge-colored hypercubes, Applied Mathematics and Computation 313 (2017) 384-391.] determined the number of distinct shortest properly colored paths between a pair of vertices for the $(1)$-colored hypercubes. It is natural to consider the number for $(j)$-coloring, $jgeq 2$. In this note, we determine the number of different shortest proper paths in $(j)$-colored hypercubes for arbitrary $j$.

rate research

Read More

115 - Minjia Shi 2020
A frequency $n$-cube $F^n(4;2,2)$ is an $n$-dimensional $4$-by-...-by-$4$ array filled by $0$s and $1$s such that each line contains exactly two $1$s. We classify the frequency $4$-cubes $F^4(4;2,2)$, find a testing set of size $25$ for $F^3(4;2,2)$, and derive an upper bound on the number of $F^n(4;2,2)$. Additionally, for any $n$ greater than $2$, we construct an $F^n(4;2,2)$ that cannot be refined to a latin hypercube, while each of its sub-$F^{n-1}(4;2,2)$ can. Keywords: frequency hypercube, frequency square, latin hypercube, testing set, MDS code
In an edge-colored graph $(G,c)$, let $d^c(v)$ denote the number of colors on the edges incident with a vertex $v$ of $G$ and $delta^c(G)$ denote the minimum value of $d^c(v)$ over all vertices $vin V(G)$. A cycle of $(G,c)$ is called proper if any two adjacent edges of the cycle have distinct colors. An edge-colored graph $(G,c)$ on $ngeq 3$ vertices is called properly vertex-pancyclic if each vertex of $(G,c)$ is contained in a proper cycle of length $ell$ for every $ell$ with $3 le ell le n$. Fujita and Magnant conjectured that every edge-colored complete graph on $ngeq 3$ vertices with $delta^c(G)geq frac{n+1}{2}$ is properly vertex-pancyclic. Chen, Huang and Yuan partially solve this conjecture by adding an extra condition that $(G,c)$ does not contain any monochromatic triangle. In this paper, we show that this conjecture is true if the edge-colored complete graph contain no joint monochromatic triangles.
Let $mathcal{C}$ be a family of edge-colored graphs. A $t$-edge colored graph $G$ is $(mathcal{C}, t)$-saturated if $G$ does not contain any graph in $mathcal{C}$ but the addition of any edge in any color in $[t]$ creates a copy of some graph in $mathcal{C}$. Similarly to classical saturation functions, define $mathrm{sat}_t(n, mathcal{C})$ to be the minimum number of edges in a $(mathcal{C},t)$ saturated graph. Let $mathcal{C}_r(H)$ be the family consisting of every edge-colored copy of $H$ which uses exactly $r$ colors. In this paper we consider a variety of colored saturation problems. We determine the order of magnitude for $mathrm{sat}_t(n, mathcal{C}_r(K_k))$ for all $r$, showing a sharp change in behavior when $rgeq binom{k-1}{2}+2$. A particular case of this theorem proves a conjecture of Barrus, Ferrara, Vandenbussche, and Wenger. We determine $mathrm{sat}_t(n, mathcal{C}_2(K_3))$ exactly and determine the extremal graphs. Additionally, we document some interesting irregularities in the colored saturation function.
Let $F$ be a fixed graph. The rainbow Turan number of $F$ is defined as the maximum number of edges in a graph on $n$ vertices that has a proper edge-coloring with no rainbow copy of $F$ (where a rainbow copy of $F$ means a copy of $F$ all of whose edges have different colours). The systematic study of such problems was initiated by Keevash, Mubayi, Sudakov and Verstraete. In this paper, we show that the rainbow Turan number of a path with $k+1$ edges is less than $left(frac{9k}{7}+2right) n$, improving an earlier estimate of Johnston, Palmer and Sarkar.
It is conjectured that every edge-colored complete graph $G$ on $n$ vertices satisfying $Delta^{mon}(G)leq n-3k+1$ contains $k$ vertex-disjoint properly edge-colored cycles. We confirm this conjecture for $k=2$, prove several additional weaker results for general $k$, and we establish structural properties of possible minimum counterexamples to the conjecture. We also reveal a close relationship between properly edge-colored cycles in edge-colored complete graphs and directed cycles in multi-partite tournaments. Using this relationship and our results on edge-colored complete graphs, we obtain several partial solutions to a conjecture on disjoint cycles in directed graphs due to Bermond and Thomassen.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا