Do you want to publish a course? Click here

Vertex-disjoint properly edge-colored cycles in edge-colored complete graphs

128   0   0.0 ( 0 )
 Added by Ruonan Li
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

It is conjectured that every edge-colored complete graph $G$ on $n$ vertices satisfying $Delta^{mon}(G)leq n-3k+1$ contains $k$ vertex-disjoint properly edge-colored cycles. We confirm this conjecture for $k=2$, prove several additional weaker results for general $k$, and we establish structural properties of possible minimum counterexamples to the conjecture. We also reveal a close relationship between properly edge-colored cycles in edge-colored complete graphs and directed cycles in multi-partite tournaments. Using this relationship and our results on edge-colored complete graphs, we obtain several partial solutions to a conjecture on disjoint cycles in directed graphs due to Bermond and Thomassen.



rate research

Read More

Properly colored cycles in edge-colored graphs are closely related to directed cycles in oriented graphs. As an analogy of the well-known Caccetta-H{a}ggkvist Conjecture, we study the existence of properly colored cycles of bounded length in an edge-colored graph. We first prove that for all integers $s$ and $t$ with $tgeq sgeq2$, every edge-colored graph $G$ with no properly colored $K_{s,t}$ contains a spanning subgraph $H$ which admits an orientation $D$ such that every directed cycle in $D$ is a properly colored cycle in $G$. Using this result, we show that for $rgeq4$, if the Caccetta-H{a}ggkvist Conjecture holds , then every edge-colored graph of order $n$ with minimum color degree at least $n/r+2sqrt{n}+1$ contains a properly colored cycle of length at most $r$. In addition, we also obtain an asymptotically tight total color degree condition which ensures a properly colored (or rainbow) $K_{s,t}$.
Let $G$ be a graph of order $n$ with an edge-coloring $c$, and let $delta^c(G)$ denote the minimum color-degree of $G$. A subgraph $F$ of $G$ is called rainbow if any two edges of $F$ have distinct colors. There have been a lot results in the existing literature on rainbow triangles in edge-colored complete graphs. Fujita and Magnant showed that for an edge-colored complete graph $G$ of order $n$, if $delta^c(G)geq frac{n+1}{2}$, then every vertex of $G$ is contained in a rainbow triangle. In this paper, we show that if $delta^c(G)geq frac{n+k}{2}$, then every vertex of $G$ is contained in at least $k$ rainbow triangles, which can be seen as a generalization of their result. Li showed that for an edge-colored graph $G$ of order $n$, if $delta^c(G)geq frac{n+1}{2}$, then $G$ contains a rainbow triangle. We show that if $G$ is complete and $delta^c(G)geq frac{n}{2}$, then $G$ contains a rainbow triangle and the bound is sharp. Hu et al. showed that for an edge-colored graph $G$ of order $ngeq 20$, if $delta^c(G)geq frac{n+2}{2}$, then $G$ contains two vertex-disjoint rainbow triangles. We show that if $G$ is complete with order $ngeq 8$ and $delta^c(G)geq frac{n+1}{2}$, then $G$ contains two vertex-disjoint rainbow triangles. Moreover, we improve the result of Hu et al. from $ngeq 20$ to $ngeq 7$, the best possible.
Let $G = (V, E)$ be an $n$-vertex edge-colored graph. In 2013, H. Li proved that if every vertex $v in V$ is incident to at least $(n+1)/2$ distinctly colored edges, then $G$ admits a rainbow triangle. We prove that the same hypothesis ensures a rainbow $ell$-cycle $C_{ell}$ whenever $n ge 432 ell$. This result is sharp for all odd integers $ell geq 3$, and extends earlier work of the authors for when $ell$ is even.
Let $G$ be a graph of order $n$ with an edge-coloring $c$, and let $delta^c(G)$ denote the minimum color degree of $G$. A subgraph $F$ of $G$ is called rainbow if all edges of $F$ have pairwise distinct colors. There have been a lot results on rainbow cycles of edge-colored graphs. In this paper, we show that (i) if $delta^c(G)>frac{3n-3}{4}$, then every vertex of $G$ is contained in a rainbow triangle; (ii) $delta^c(G)>frac{3n}{4}$, then every vertex of $G$ is contained in a rainbow $C_4$; and (iii) if $G$ is complete, $ngeq 8k-18$ and $delta^c(G)>frac{n-1}{2}+k$, then $G$ contains a rainbow cycle of length at least $k$. Some gaps in previous publications are also found and corrected.
In an edge-colored graph $(G,c)$, let $d^c(v)$ denote the number of colors on the edges incident with a vertex $v$ of $G$ and $delta^c(G)$ denote the minimum value of $d^c(v)$ over all vertices $vin V(G)$. A cycle of $(G,c)$ is called proper if any two adjacent edges of the cycle have distinct colors. An edge-colored graph $(G,c)$ on $ngeq 3$ vertices is called properly vertex-pancyclic if each vertex of $(G,c)$ is contained in a proper cycle of length $ell$ for every $ell$ with $3 le ell le n$. Fujita and Magnant conjectured that every edge-colored complete graph on $ngeq 3$ vertices with $delta^c(G)geq frac{n+1}{2}$ is properly vertex-pancyclic. Chen, Huang and Yuan partially solve this conjecture by adding an extra condition that $(G,c)$ does not contain any monochromatic triangle. In this paper, we show that this conjecture is true if the edge-colored complete graph contain no joint monochromatic triangles.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا