Do you want to publish a course? Click here

Weil-Petersson geometry on the space of Bridgeland stability conditions

105   0   0.0 ( 0 )
 Added by Yu-Wei Fan
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

Inspired by mirror symmetry, we investigate some differential geometric aspects of the space of Bridgeland stability conditions on a Calabi-Yau triangulated category. The aim is to develop theory of Weil-Petersson geometry on the stringy Kahler moduli space. A few basic examples are studied. In particular, we identify our Weil-Petersson metric with the Bergman metric on a Siegel modular variety in the case of the self-product of an elliptic curve.



rate research

Read More

324 - Peter Zograf 2020
A relatively fast algorithm for evaluating Weil-Petersson volumes of moduli spaces of complex algebraic curves is proposed. On the basis of numerical data, a conjectural large genus asymptotics of the Weil-Petersson volumes is computed. Asymptotic formulas for the intersection numbers involving $psi$-classes are conjectured as well. The accuracy of the formulas is high enough to believe that they are exact.
113 - Jason Lo , Karissa Wong 2020
In this short note, we describe a problem in algebraic geometry where the solution involves Catalan numbers. More specifically, we consider the derived category of coherent sheaves on an elliptic surface, and the action of its autoequivalence group on its Bridgeland stability manifold. In solving an equation involving this group action, the generating function of Catalan numbers arises, allowing us to use asymptotic estimates of Catalan numbers to arrive at a bound for the solution set.
108 - Salvatore Tambasco 2021
In this work we show that the Weil-Petersson volume (which coincides with the CM degree) in the case of weighted points in the projective line is continuous when approaching the Calabi-Yau geometry from the Fano geometry. More specifically, the CM volume computed via localization converges to the geometric volume, computed by McMullen with different techniques, when the sum of the weights approaches the Calabi-Yau geometry.
119 - Rebecca Tramel , Bingyu Xia 2017
Let $X$ be a smooth complex projective variety. In 2002, Bridgeland defined a notion of stability for the objects in $D^b(X)$, the bounded derived category of coherent sheaves on $X$, which generalized the notion of slope stability for vector bundles on curves. There are many nice connections between stability conditions on $X$ and the geometry of the variety. We construct new stability conditions for surfaces containing a curve $C$ whose self-intersection is negative. We show that these stability conditions lie on a wall of the geometric chamber of ${rm Stab}(X)$, the stability manifold of $X$. We then construct the moduli space $M_{sigma}(mathcal{O}_X)$ of $sigma$-semistable objects of class $[mathcal{O}_X]$ in $K_0(X)$ after wall-crossing.
We give further counterexamples to the conjectural construction of Bridgeland stability on threefolds due to Bayer, Macr`i, and Toda. This includes smooth projective threefolds containing a divisor that contracts to a point, and Weierstra{ss} elliptic Calabi-Yau threefolds. Furthermore, we show that if the original conjecture, or a minor modification of it, holds on a smooth projective threefold, then the space of stability conditions is non-empty on the blow up at an arbitrary point. More precisely, there are stability conditions on the blow up for which all skyscraper sheaves are semistable.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا