Do you want to publish a course? Click here

Electrical transport and optical band gap of NiFe$_textrm{2}$O$_textrm{x}$ thin films

350   0   0.0 ( 0 )
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We fabricated NiFe$_textrm{2}$O$_textrm{x}$ thin films on MgAl$_2$O$_4$(001) substrates by reactive dc magnetron co-sputtering varying the oxygen partial pressure during deposition. The fabrication of a variable material with oxygen deficiency leads to controllable electrical and optical properties which would be beneficial for the investigations of the transport phenomena and would, therefore, promote the use of such materials in spintronic and spin caloritronic applications. We used several characterization techniques in order to investigate the film properties, focusing on their structural, magnetic, electrical, and optical properties. From the electrical resistivity measurements we obtained the conduction mechanisms that govern the systems in high and low temperature regimes, extracting low thermal activation energies which unveil extrinsic transport mechanisms. The thermal activation energy decreases in the less oxidized samples revealing the pronounced contribution of a large amount of electronic states localized in the band gap to the electrical conductivity. Hall effect measurements showed the mixed-type semiconducting character of our films. The optical band gaps were determined via ultraviolet-visible spectroscopy. They follow a similar trend as the thermal activation energy, with lower band gap values in the less oxidized samples.



rate research

Read More

We present a systematic study of the magnetic proximity effect in Pt, depending on the magnetic moment and anisotropy of adjacent metallic ferromagnets. Element-selective x-ray resonant magnetic reflectivity measurements at the Pt absorption edge (11565$,$eV) are carried out to investigate the spin polarization of Pt in Pt/Co$_textrm{1-x}$Fe$_textrm{x}$ bilayers. We observe the largest magnetic moment of (0.72$,pm,$0.03)$, mu_textrm{B}$ per spin polarized Pt atom in Pt/Co$_textrm{33}$Fe$_textrm{67}$, following the Slater-Pauling curve of magnetic moments in Co-Fe alloys. In general, a clear linear dependence is observed between the Pt moment and the moment of the adjacent ferromagnet. Further, we study the magnetic anisotropy of the magnetized Pt which clearly adopts the magnetic anisotropy of the ferromagnet below. This is depicted for Pt on Fe(001) and on Co$_textrm{50}$Fe$_textrm{50}$(001), which have a 45$^{circ}$ relative rotation of the fourfold magnetocrystalline anisotropy.
In this work, amorphous thin films in Mg-Si-O-N system were prepared in order to investigate the dependence of optical and mechanical properties on Mg composition. Reactive RF magnetron co-sputtering from magnesium and silicon targets were used for the deposition of Mg-Si-O-N thin films. Films were deposited on float glass, silica wafers and sapphire substrates in an Ar, N2 and O2 gas mixture. X-ray photoelectron spectroscopy, atomic force microscopy, scanning electron microscopy, spectroscopic ellipsometry, and nanoindentation were employed to characterize the composition, surface morphology, and properties of the films.
Two-dimensional (2D) materials with narrow band gaps (~0.3 eV) are of great importance for realizing ambipolar transistors and mid-infrared (MIR) detection. However, most of the 2D materials studied so far have band gaps that are too large. A few of them with suitable band gaps are not stable under ambient conditions. In this study, the layered Nb$_{2}$SiTe$_{4}$ is shown to be a stable 2D material with a band gap of 0.39 eV. Field-effect transistors based on few-layer Nb$_2$SiTe$_4$ show ambipolar transport with similar magnitude of electron and hole current and high charge-carrier mobility of ~ 100 cm$^{2}$V$^{-1}$s$^{-1}$ at room temperature. Optoelectronic measurements of the devices show clear response to MIR wavelength of 3.1 $mathrmmu$m with a high responsivity of ~ 0.66 AW$^{-1}$. These results establish Nb$_{2}$SiTe$_{4}$ as a good candidate for ambipolar devices and MIR detection.
In standard electron paramagnetic resonance (EPR) spectroscopy, the frequency of an experiment is set and the spectrum is acquired using magnetic field as the independent variable. There are cases in which it is desirable instead to fix the field and tune the frequency such as when studying avoided level crossings. We have designed and tested an adjustable frequency and variable coupling EPR probe with loop-gap resonators (LGRs) that works at a temperature down to 1.8 K. The frequency is tuned by adjusting the height of a dielectric piece of sapphire inserted into the gap of an LGR; coupling of the microwave antenna is varied with the height of antenna above the LGR. Both coupling antenna and dielectric are located within the cryogenic sample chamber, but their motion is controlled with external micrometers located outside the cryostat. The frequency of the LGR can be adjusted by more than 1 GHz. To cover a wide range of frequencies, different LGRs can be designed to cover frequencies up to X-band. We demonstrate the operation of our probe by mapping out avoided crossings for the Ni$_4$ single-molecule magnet to determine the tunnel splittings with high precision.
Amorphous molybdenum silicide compounds have attracted significant interest for potential device applications, particularly in single-photon detector. In this work, the temperature-dependent resistance and magneto-resistance behaviors were measured to reveal the charge transport mechanism, which is of great importance for applications but is still insufficient. It is found that Mott variable hopping conductivity dominates the transport of sputtered amorphous molybdenum silicide thin films. Additionally, the observed magneto-resistance crossover from negative to positive is ascribed to the interference enhancement and the shrinkage of electron wave function, both of which vary the probability of hopping between localized sites.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا