Do you want to publish a course? Click here

A Jupiter-mass planet around the K0 giant HD 208897

74   0   0.0 ( 0 )
 Added by Mesut Yilmaz
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

For over 10 years, we have carried out a precise radial velocity (RV) survey to find substellar companions around evolved G,K-type stars to extend our knowledge of planet formation and evolution. We performed high precision RV measurements for the giant star HD 208897 using an iodine (I2) absorption cell. The measurements were made at TUB.ITAK National Observatory (TUG, RTT150) and Okayama Astrophysical Observatory (OAO). For the origin of the periodic variation seen in the RV data of the star, we adopted a Keplerian motion caused by an unseen companion. We found that the star hosts a planet with a minimum mass of m2sini=1.40MJ, which is relatively low compared to those of known planets orbiting evolved intermediate-mass stars. The planet is in a nearly circular orbit with a period of P=353 days at about 1 AU distance from the host star. The star is metal rich and located at the early phase of ascent along the red giant branch. The photometric observations of the star at Ankara University Kreiken Observatory (AUKR) and the HIPPARCOS photometry show no sign of variation with periods associated with the RV variation. Neither bisector velocity analysis nor analysis of the Ca II and Halpha lines shows any correlation with the RV measurements.



rate research

Read More

We report the discovery of one or more planet-mass companions to the K0-giant HD 102272 with the Hobby-Eberly Telescope. In the absence of any correlation of the observed periodicities with the standard indicators of stellar activity, the observed radial velocity variations are most plausibly explained in terms of a Keplerian motion of at least one planet-mass body around the star. With the estimated stellar mass of 1.9M$_odot$, the minimum mass of the confirmed planet is 5.9M$_J$. The planets orbit is characterized by a small but nonzero eccentricity of $e$=0.05 and the semi-major axis of 0.61 AU, which makes it the most compact one discovered so far around GK-giants. This detection adds to the existing evidence that, as predicted by theory, the minimum size of planetary orbits around intermediate-mass giants is affected by both planet formation processes and stellar evolution. The currently available evidence for another planet around HD 102272 is insufficient to obtain an unambiguous two-orbit solution.
347 - A. Niedzielski 2007
We report the discovery of a substellar-mass companion to the K0-giant HD 17092 with the Hobby-Eberly Telescope. In the absence of any correlation of the observed 360-day periodicity with the standard indicators of stellar activity, the observed radial velocity variations are most plausibly explained in terms of a Keplerian motion of a planetary-mass body around the star. With the estimated stellar mass of 2.3Msun, the minimum mass of the planet is 4.6MJ. The planets orbit is characterized by a mild eccentricity of e=0.17 and a semi-major axis of 1.3 AU. This is the tenth published detection of a planetary companion around a red giant star. Such discoveries add to our understanding of planet formation around intermediate-mass stars and they provide dynamical information on the evolution of planetary systems around post-main sequence stars.
Aims. We have been carrying out a precise radial velocity (RV) survey for K giants to search for and study the origin of the lowamplitude and long-periodic RV variations. Methods. We present high-resolution RV measurements of the K2 giant HD 66141 from December 2003 to January 2011 using the fiber-fed Bohyunsan Observatory Echelle Spectrograph (BOES) at Bohyunsan Optical Astronomy Observatory (BOAO). Results. We find that the RV measurements for HD 66141 exhibit a periodic variation of 480.5 +/- 0.5 days with a semi-amplitude of 146.2 +/- 2.7 m/s. The Hipparcos photometry and bisector velocity span (BVS) do not show any obvious correlations with RV variations. We find indeed 706.4 +/- 35.0 day variations in equivalent width (EW) measurements of H_alpha line and 703.0 +/- 39.4 day variations in a space-born measurements 1.25{mu} flux of HD 66141 measured during COBE/DIRBE experiment. We reveal that a mean value of long-period variations is about 705 +/- 53 days and the origin is a rotation period of the star and variability that is caused by surface inhomogeneities. For the 480 day periods of RV variations an orbital motion is the most likely explanation. Assuming a stellar mass of 1.1 +/- 0.1 M_Sun? for HD 66141, we obtain a minimum mass for the planetary companion of 6.0 +/- 0.3 M_Jup with an orbital semi-major axis of 1.2 +/- 0.1 AU and an eccentricity of 0.07 +/- 0.03.
102 - A. Carmona , W.F. Thi , I. Kamp 2016
Context: Quantifying the gas content inside the dust gaps of transition disks is important to establish their origin. Aims: We seek to constrain the surface density of warm gas in the disk of HD 139614, a Herbig Ae star with a transition disk exhibiting a dust gap from 2.3 to 6 AU. Methods: We have obtained ESO/VLT CRIRES high-resolution spectra of CO ro-vibrational emission. We derived constraints on the disks structure by modeling the line-profiles, the spectroastrometric signal, and the rotational diagrams using flat Keplerian disk models. Results: We detected v=1-0 12CO, 2-1 12CO, 1-0 13CO, 1-0 C18O, and 1-0 C17O ro-vibrational lines. 12CO v=1-0 lines have an average width of 14 km/s, Tgas of 450 K and an emitting region from 1 to 15 AU. 13CO and C18O lines are on average 70 and 100 K colder, 1 and 4 km/s narrower, and are dominated by emission at R>6 AU. The 12CO v=1-0 line-profile indicates that if there is a gap in the gas it must be narrower than 2 AU. We find that a drop in the gas surface density (delta_gas) at R<5-6 AU is required to simultaneously reproduce the line-profiles and rotational diagrams of the three CO isotopologs. Delta_gas can range from 10^-2 to 10^-4 depending on the gas-to-dust ratio of the outer disk. We find that at 1<R<6 AU the gas surface density profile is flat or increases with radius. We derive a gas column density at 1<R<6 AU of NH=3x10^19 - 10^21 cm^-2. We find a 5sigma upper limit on NCO at R<1 AU of 5x10^15 cm^-2 (NH<5x10^19 cm^-2). Conclusions: The dust gap in the disk of HD 139614 has gas. The gas surface density in the disk at R<6 AU is significantly lower than the surface density expected from HD 139614s accretion rate assuming a viscous alpha-disk model. The gas density drop, the non-negative density gradient of the gas inside 6 AU, and the absence of a wide (>2 AU) gas gap suggest the presence of an embedded <2 MJ planet at around 4 AU.
We have completed a high-contrast direct imaging survey for giant planets around 57 debris disk stars as part of the Gemini NICI Planet-Finding Campaign. We achieved median H-band contrasts of 12.4 mag at 0.5 and 14.1 mag at 1 separation. Follow-up observations of the 66 candidates with projected separation < 500 AU show that all of them are background objects. To establish statistical constraints on the underlying giant planet population based on our imaging data, we have developed a new Bayesian formalism that incorporates (1) non-detections, (2) single-epoch candidates, (3) astrometric and (4) photometric information, and (5) the possibility of multiple planets per star to constrain the planet population. Our formalism allows us to include in our analysis the previously known Beta Pictoris and the HR 8799 planets. Our results show at 95% confidence that <13% of debris disk stars have a >5MJup planet beyond 80 AU, and <21% of debris disk stars have a >3MJup planet outside of 40 AU, based on hot-start evolutionary models. We model the population of directly-imaged planets as d^2N/dMda ~ m^alpha a^beta, where m is planet mass and a is orbital semi-major axis (with a maximum value of amax). We find that beta < -0.8 and/or alpha > 1.7. Likewise, we find that beta < -0.8 and/or amax < 200 AU. If we ignore the Beta Pic and HR 8799 planets (should they belong to a rare and distinct group), we find that < 20% of debris disk stars have a > 3MJup planet beyond 10 AU, and beta < -0.8 and/or alpha < -1.5. Our Bayesian constraints are not strong enough to reveal any dependence of the planet frequency on stellar host mass. Studies of transition disks have suggested that about 20% of stars are undergoing planet formation; our non-detections at large separations show that planets with orbital separation > 40 AU and planet masses > 3 MJup do not carve the central holes in these disks.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا