Do you want to publish a course? Click here

A Planet in a 0.6-AU Orbit Around the K0 Giant HD 102272

254   0   0.0 ( 0 )
 Added by Andrzej Niedzielski
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the discovery of one or more planet-mass companions to the K0-giant HD 102272 with the Hobby-Eberly Telescope. In the absence of any correlation of the observed periodicities with the standard indicators of stellar activity, the observed radial velocity variations are most plausibly explained in terms of a Keplerian motion of at least one planet-mass body around the star. With the estimated stellar mass of 1.9M$_odot$, the minimum mass of the confirmed planet is 5.9M$_J$. The planets orbit is characterized by a small but nonzero eccentricity of $e$=0.05 and the semi-major axis of 0.61 AU, which makes it the most compact one discovered so far around GK-giants. This detection adds to the existing evidence that, as predicted by theory, the minimum size of planetary orbits around intermediate-mass giants is affected by both planet formation processes and stellar evolution. The currently available evidence for another planet around HD 102272 is insufficient to obtain an unambiguous two-orbit solution.



rate research

Read More

For over 10 years, we have carried out a precise radial velocity (RV) survey to find substellar companions around evolved G,K-type stars to extend our knowledge of planet formation and evolution. We performed high precision RV measurements for the giant star HD 208897 using an iodine (I2) absorption cell. The measurements were made at TUB.ITAK National Observatory (TUG, RTT150) and Okayama Astrophysical Observatory (OAO). For the origin of the periodic variation seen in the RV data of the star, we adopted a Keplerian motion caused by an unseen companion. We found that the star hosts a planet with a minimum mass of m2sini=1.40MJ, which is relatively low compared to those of known planets orbiting evolved intermediate-mass stars. The planet is in a nearly circular orbit with a period of P=353 days at about 1 AU distance from the host star. The star is metal rich and located at the early phase of ascent along the red giant branch. The photometric observations of the star at Ankara University Kreiken Observatory (AUKR) and the HIPPARCOS photometry show no sign of variation with periods associated with the RV variation. Neither bisector velocity analysis nor analysis of the Ca II and Halpha lines shows any correlation with the RV measurements.
189 - A. Gould , A. Udalski , I.-G. Shin 2014
We detect a cold, terrestrial planet in a binary-star system using gravitational microlensing. The planet has low mass (2 Earth masses) and lies projected at $a_{perp,ph}$ ~ 0.8 astronomical units (AU) from its host star, similar to the Earth-Sun distance. However, the planet temperature is much lower, T<60 Kelvin, because the host star is only 0.10--0.15 solar masses and therefore more than 400 times less luminous than the Sun. The host is itself orbiting a slightly more massive companion with projected separation $a_{perp,ch}=$10--15 AU. Straightforward modification of current microlensing search strategies could increase their sensitivity to planets in binary systems. With more detections, such binary-star/planetary systems could place constraints on models of planet formation and evolution. This detection is consistent with such systems being very common.
361 - A. Niedzielski 2007
We report the discovery of a substellar-mass companion to the K0-giant HD 17092 with the Hobby-Eberly Telescope. In the absence of any correlation of the observed 360-day periodicity with the standard indicators of stellar activity, the observed radial velocity variations are most plausibly explained in terms of a Keplerian motion of a planetary-mass body around the star. With the estimated stellar mass of 2.3Msun, the minimum mass of the planet is 4.6MJ. The planets orbit is characterized by a mild eccentricity of e=0.17 and a semi-major axis of 1.3 AU. This is the tenth published detection of a planetary companion around a red giant star. Such discoveries add to our understanding of planet formation around intermediate-mass stars and they provide dynamical information on the evolution of planetary systems around post-main sequence stars.
We report the detection of three new exoplanets from Keck Observatory. HD 163607 is a metal-rich G5IV star with two planets. The inner planet has an observed orbital period of 75.29 $pm$ 0.02 days, a semi-amplitude of 51.1 $pm$ 1.4 ms, an eccentricity of 0.73 $pm$ 0.02 and a derived minimum mass of msini = 0.77 $pm$ 0.02 mjup. This is the largest eccentricity of any known planet in a multi-planet system. The argument of periastron passage is 78.7 $pm$ 2.0$^{circ}$; consequently, the planets closest approach to its parent star is very near the line of sight, leading to a relatively high transit probability of 8%. The outer planet has an orbital period of 3.60 $pm$ 0.02 years, an orbital eccentricity of 0.12 $pm$ 0.06 and a semi-amplitude of 40.4 $pm$ 1.3 ms. The minimum mass is msini = 2.29 $pm$ 0.16 mjup. HD 164509 is a metal-rich G5V star with a planet in an orbital period of 282.4 $pm$ 3.8 days and an eccentricity of 0.26 $pm$ 0.14. The semi-amplitude of 14.2 $pm$ 2.7 ms implies a minimum mass of 0.48 $pm$ 0.09 mjup. The radial velocities of HD 164509 also exhibit a residual linear trend of -5.1 $pm$ 0.7 ms per year, indicating the presence of an additional longer period companion in the system. Photometric observations demonstrate that HD 163607 and HD 164509 are constant in brightness to sub-millimag levels on their radial velocity periods. This provides strong support for planetary reflex motion as the cause of the radial velocity variations.
210 - M. Gillon 2008
We report high-precision transit photometry for the recently detected planet HD 17156b. Using these new data with previously published transit photometry and radial velocity measurements, we perform a combined analysis based on a Markov Chain Monte Carlo approach. The resulting mass M_p = 3.09 (+0.22-0.17) M_Jup and radius R_p = 1.23 (+0.17-0.20) R_Jup for the planet places it at the outer edge of the density distribution of known transiting planets with rho_p = 1.66 (+1.37-0.60) rho_Jup. The obtained transit ephemeris is T_tr = 2454438.48271 (+0.00077-0.00057) + N x 21.21747 (+0.00070-0.00067) BJD. The derived plausible tidal circularization time scales for HD 17156b are larger than the age of the host star. The measured high orbital eccentricity e = 0.6719 (+0.0052-0.0063) can thus not be interpreted as the clear sign of the presence of another body in the system.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا