Do you want to publish a course? Click here

Orbital-selective spin excitation of a magnetic porphyrin

168   0   0.0 ( 0 )
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Scattering of electrons by localized spins is the ultimate process enabling electrical detection and control of the magnetic state of a spin-doped material. At the molecular scale, this scattering is mediated by the electronic orbitals hosting the spin. Here we report the selective excitation of a molecular spin by electrons tunneling through different molecular orbitals. Spatially-resolved tunneling spectra on iron porphyrins on Au(111) reveal that the inelastic spin excitation extends beyond the iron site. The inelastic features also change shape and symmetry along the molecule. Combining DFT simulations with a phenomenological scattering model, we show that the extension and lineshape variations of the inelastic signal are due to excitation pathways assisted by different frontier orbitals, each of them with a different degree of hybridization with the surface. By selecting the intramolecular site for electron injection, the relative weight of iron and pyrrole orbitals in the tunneling process is modified. In this way, the spin excitation mechanism, reflected by its spectral lineshape, changes depending on the degree of localization and energy alignment of the chosen molecular orbital.



rate research

Read More

We present a comprehensive study of the spin excitations - as measured by the dynamical spin structure factor $S(q,omega)$ - of the so-called block-magnetic state of low-dimensional orbital-selective Mott insulators. We realize this state via both a multi-orbital Hubbard model and a generalized Kondo-Heisenberg Hamiltonian. Due to various competing energy scales present in the models, the system develops periodic ferromagnetic islands of various shapes and sizes, which are antiferromagnetically coupled. The 2$times$2 particular case was already found experimentally in the ladder material BaFe$_2$Se$_3$ that becomes superconducting under pressure. Here we discuss the electronic density as well as Hubbard and Hund coupling dependence of $S(q,omega)$ using density matrix renormalization group method. Several interesting features were identified: (1) An acoustic (dispersive spin-wave) mode develops. (2) The spin-wave bandwidth establishes a new energy scale that is strongly dependent on the size of the magnetic island and becomes abnormally small for large clusters. (3) Optical (dispersionless spin excitation) modes are present for all block states studied here. In addition, a variety of phenomenological spin Hamiltonians have been investigated but none matches entirely our results that were obtained primarily at intermediate Hubbard $U$ strengths. Our comprehensive analysis provides theoretical guidance and motivation to crystal growers to search for appropriate candidate materials to realize the block states, and to neutron scattering experimentalists to confirm the exotic dynamical magnetic properties unveiled here, with a rich mixture of acoustic and optical features.
We report on the fabrication and transport characterization of atomically-precise single molecule devices consisting of a magnetic porphyrin covalently wired by graphene nanoribbon electrodes. The tip of a scanning tunneling microscope was utilized to contact the end of a GNR-porphyrin-GNR hybrid system and create a molecular bridge between tip and sample for transport measurements. Electrons tunneling through the suspended molecular heterostructure excited the spin multiplet of the magnetic porphyrin. The detachment of certain spin-centers from the surface shifted their spin-carrying orbitals away from an on-surface mixed-valence configuration, recovering its original spin state. The existence of spin-polarized resonances in the free-standing systems and their electrical addressability is the fundamental step for utilization of carbon-based materials as functional molecular spintronics systems.
Topological insulators represent a new quantum state of matter that are insulating in the bulk but metallic on the edge or surface. In the Dirac surface state, it is well-established that the electron spin is locked with the crystal momentum. Here we report a new phenomenon of the spin texture locking with the orbital texture in a topological insulator Bi2Se3. We observe light-polarization-dependent spin texture of both the upper and lower Dirac cones that constitutes strong evidence of the orbital-dependent spin texture in Bi2Se3. The different spin texture detected in variable polarization geometry is the manifestation of the spin-orbital texture in the initial state combined with the photoemission matrix element effects. Our observations provide a new orbital degree of freedom and a new way of light manipulation in controlling the spin structure of the topological insulators that are important for their future applications in spin-related technologies.
We use co-tunneling spectroscopy to investigate spin-, orbital-, and spin-orbital Kondo transport in a strongly confined system of InAs double quantum dots (QDs) parallel-coupled to source and drain. In the one-electron transport regime, the higher symmetry spin-orbital Kondo effect manifests at orbital degeneracy and no external magnetic field. We then proceed to show that the individual Kondo contributions can be isolated and studied separately; either by orbital detuning in the case of spin-Kondo transport, or by spin splitting in the case of orbital Kondo transport. By varying the inter-dot tunnel coupling, we show that lifting of the spin degeneracy is key to confirming the presence of an orbital degeneracy, and to detecting a small orbital hybridization gap. Finally, in the two-electron regime, we show that the presence of a spin-triplet ground state results in spin-Kondo transport at zero magnetic field.
In graphene spintronics, interaction of localized magnetic moments with the electron spins paves a new way to explore the underlying spin relaxation mechanism. A self-assembled layer of organic cobalt-porphyrin (CoPP) molecules on graphene provides a desired platform for such studies via the magnetic moments of porphyrin-bound cobalt atoms. In this work a study of spin transport properties of graphene spin-valve devices functionalized with such CoPP molecules as a function of temperature via non-local spin-valve and Hanle spin precession measurements is reported. For the functionalized (molecular) devices, we observe a slight decrease in the spin relaxation time ({tau}s), which could be an indication of enhanced spin-flip scattering of the electron spins in graphene in the presence of the molecular magnetic moments. The effect of the molecular layer is masked for low quality samples (low mobility), possibly due to dominance of Elliot-Yafet (EY) type spin relaxation mechanisms.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا