Do you want to publish a course? Click here

Correlated dynamics in a synthetic lattice of momentum states

208   0   0.0 ( 0 )
 Added by Fangzhao An
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the influence of atomic interactions on quantum simulations in momentum-space lattices (MSLs), where driven transitions between discrete momentum states mimic transport between sites of a synthetic lattice. Low energy atomic collisions, which are short ranged in real space, relate to nearly infinite-ranged interactions in momentum space. However, the added exchange energy between atoms in distinguishable momentum states leads to an effectively attractive, finite-ranged interaction in momentum space. In this work, we observe the onset of self-trapping driven by such interactions in a momentum-space double well, paving the way for more complex many-body studies in tailored MSLs. We consider the types of phenomena that may result from these interactions, including the formation of chiral solitons in topological zigzag lattices.

rate research

Read More

The scope of analog simulation in atomic, molecular, and optical systems has expanded greatly over the past decades. Recently, the idea of synthetic dimensions -- in which transport occurs in a space spanned by internal or motional states coupled by field-driven transitions -- has played a key role in this expansion. While approaches based on synthetic dimensions have led to rapid advances in single-particle Hamiltonian engineering, strong interaction effects have been conspicuously absent from most synthetic dimensions platforms. Here, in a lattice of coupled atomic momentum states, we show that atomic interactions result in large and qualitative changes to dynamics in the synthetic dimension. We explore how the interplay of nonlinear interactions and coherent tunneling enriches the dynamics of a one-band tight-binding model, giving rise to macroscopic self-trapping and phase-driven Josephson dynamics with a nonsinusoidal current-phase relationship, which can be viewed as stemming from a nonlinear band structure arising from interactions.
Dissipation can serve as a powerful resource for controlling the behavior of open quantum systems.Recently there has been a surge of interest in the influence of dissipative coupling on large quantum systems and, more specifically, how these processes can influence band topology and phenomena like many-body localization. Here, we explore the engineering of local, tunable dissipation in so-called synthetic lattices, arrays of quantum states that are parametrically coupled in a fashion analogous to quantum tunneling. Considering the specific case of momentum-state lattices, we investigate two distinct mechanisms for engineering controlled loss: one relying on an explicit form of dissipation by spontaneous emission, and another relying on reversible coupling to a large reservoir of unoccupied states. We experimentally implement the latter and demonstrate the ability to tune the local loss rate over a large range. The introduction of controlled loss to the synthetic lattice toolbox promises to pave the way for studying the interplay of dissipation with topology, disorder, and interactions.
Chiral edge states are a hallmark of quantum Hall physics. In electronic systems, they appear as a macroscopic consequence of the cyclotron orbits induced by a magnetic field, which are naturally truncated at the physical boundary of the sample. Here we report on the experimental realization of chiral edge states in a ribbon geometry with an ultracold gas of neutral fermions subjected to an artificial gauge field. By imaging individual sites along a synthetic dimension, we detect the existence of the edge states, investigate the onset of chirality as a function of the bulk-edge coupling, and observe the edge-cyclotron orbits induced during a quench dynamics. The realization of fermionic chiral edge states is a fundamental achievement, which opens the door towards experiments including edge state interferometry and the study of non-Abelian anyons in atomic systems.
134 - Shuyuan Wu , Xizhou Qin , Jun Xu 2016
According to the famous Kibble-Zurek mechanism (KZM), the universality of spontaneous defect generation in continuous phase transitions (CPTs) can be understood by the critical slowing down. In most CPTs of atomic Bose-Einstein condensates (BECs), the universality of spontaneous defect generations has been explained by the divergent relaxation time associated with the nontrivial gapless Bogoliubov excitations. However, for atomic BECs in synthetic gauge fields, their spontaneous superfluidity breakdown is resulted from the divergent correlation length associated with the zero Landau critical velocity. Here, by considering an atomic BEC ladder subjected to a synthetic magnetic field, we reveal that the spontaneous superfluidity breakdown obeys the KZM. The Kibble-Zurek scalings are derived from the Landau critical velocity which determines the correlation length. In further, the critical exponents are numerically extracted from the critical spatial-temporal dynamics of the bifurcation delay and the spontaneous vortex generation. Our study provides a general way to explore and understand the spontaneous superfluidity breakdown in CPTs from a single-well dispersion to a double-well one, such as, BECs in synthetic gauge fields, spin-orbit coupled BECs, and BECs in shaken optical lattices.
Magnetic monopoles --- particles that behave as isolated north or south magnetic poles --- have been the subject of speculation since the first detailed observations of magnetism several hundred years ago. Numerous theoretical investigations and hitherto unsuccessful experimental searches have followed Diracs 1931 development of a theory of monopoles consistent with both quantum mechanics and the gauge invariance of the electromagnetic field. The existence of even a single Dirac magnetic monopole would have far-reaching physical consequences, most famously explaining the quantization of electric charge. Although analogues of magnetic monopoles have been found in exotic spin-ices and other systems, there has been no direct experimental observation of Dirac monopoles within a medium described by a quantum field, such as superfluid helium-3. Here we demonstrate the controlled creation of Dirac monopoles in the synthetic magnetic field produced by a spinor Bose-Einstein condensate. Monopoles are identified, in both experiments and matching numerical simulations, at the termini of vortex lines within the condensate. By directly imaging such a vortex line, the presence of a monopole may be discerned from the experimental data alone. These real-space images provide conclusive and long-awaited experimental evidence of the existence of Dirac monopoles. Our result provides an unprecedented opportunity to observe and manipulate these quantum-mechanical entities in a controlled environment.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا