No Arabic abstract
In this paper, we present the design, fabrication and optical characterization of computer-generated holograms (CGH) encoding information for light beams carrying orbital angular momentum (OAM). Through the use of a numerical code, based on an iterative Fourier transform algorithm, a phase-only diffractive optical element (PH-DOE) specifically designed for OAM illumination has been computed, fabricated and tested. In order to shape the incident beam into a helicoidal phase profile and generate light carrying phase singularities, a method based on transmission through high-order spiral phase plates (SPPs) has been used. The phase pattern of the designed holographic DOEs has been fabricated using high-resolution Electron-Beam Lithography (EBL) over glass substrates coated with a positive photoresist layer (polymethylmethacrylate). To the best of our knowledge, the present study is the first attempt, in a comprehensive work, to design, fabricate and characterize computer-generated holograms encoding information for structured light carrying OAM and phase singularities. These optical devices appear promising as high-security optical elements for anti-counterfeiting applications.
We demonstrate simultaneous control of both the phase and amplitude of light using a conjugate gradient minimisation-based hologram calculation technique and a single phase-only spatial light modulator (SLM). A cost function which incorporates the inner product of the light field with a chosen target field within a defined measure region is efficiently minimised to create high fidelity patterns in the Fourier plane of the SLM. A fidelity of $F=0.999997$ is achieved for a pattern resembling an $LG^{0}_{1}$ mode with a calculated light-usage efficiency of $41.5%$. Possible applications of our method in optical trapping and ultracold atoms are presented and we show uncorrected experimental realisation of our patterns with $F = 0.97$ and $7.8%$ light efficiency.
A novel optical device is designed and fabricated in order to overcome the limits of the traditional sorter based on log-pol optical transformation for the demultiplexing of optical beams carrying orbital angular momentum (OAM). The proposed configuration simplifies the alignment procedure and significantly improves the compactness and miniaturization level of the optical architecture. Since the device requires to operate beyond the paraxial approximation, a rigorous formulation of transformation optics in the non-paraxial regime has been developed and applied. The sample has been fabricated as 256-level phase-only diffractive optics with high-resolution electron-beam lithography, and tested for the demultiplexing of OAM beams at the telecom wavelength of 1310 nm. The designed sorter can find promising applications in next-generation optical platforms for mode-division multiplexing based on OAM modes both for free-space and multi-mode fiber transmission.
Special features of the optical-vortex (OV) beams generated by thick holographic elements (HE) with embedded phase singularity are considered theoretically. The volume HE structure is based on the 3D pattern of interference between an OV beam and a standard reference wave with regular wavefront. The incident beam diffraction is described within the framework of a linear single-scattering model in which the volume HE is represented by a set of parallel thin layers with the fork holographic structure. An explicit integral expression is derived for the complex amplitude distribution of the diffracted paraxial beam with OV. The numerical analysis demonstrates that the HE thickness may essentially influence not only selectivity and efficiency of the OV beam generation but also the amplitude and phase profile of the diffracted beam as well as regularities of its propagation. We have studied the generated OV morphology and laws of its evolution; in particular, the possibility of obtaining a circularly symmetric OV beam regardless of the diffraction angle is revealed.
We optimize multilayered anti-reflective coatings for photovoltaic devices, using modern evolutionary algorithms. We apply a rigorous methodology to show that a given structure, which is particularly regular, emerge spontaneously in a very systematical way for a very broad range of conditions. The very regularity of the structure allows for a thorough physical analysis of how the designs operate. This allows to understand that the central part is a photonic crystal utilized as a buffer for light, and that the external layers have the purpose of reducing the impedance mismatch between the outer media and the Bloch mode supported by the photonic crystal. This shows how optimization can suggest new design rules and be considered as a source of inspiration. Finally, we fabricate these structures with easily deployable techniques.
We report a calculation reduction method for color computer-generated holograms (CGHs) using color space conversion. Color CGHs are generally calculated on RGB space. In this paper, we calculate color CGHs in other color spaces: for example, YCbCr color space. In YCbCr color space, a RGB image is converted to the luminance component (Y), blue-difference chroma (Cb) and red-difference chroma (Cr) components. In terms of the human eye, although the negligible difference of the luminance component is well-recognized, the difference of the other components is not. In this method, the luminance component is normal sampled and the chroma components are down-sampled. The down-sampling allows us to accelerate the calculation of the color CGHs. We compute diffraction calculations from the components, and then we convert the diffracted results in YCbCr color space to RGB color space.